Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037100389> ?p ?o ?g. }
- W3037100389 endingPage "117725" @default.
- W3037100389 startingPage "117714" @default.
- W3037100389 abstract "Prostate cancer is the second-deadliest cancer in men in the United States, seriously affecting people's life and health. The Gleason grading system is one of the most reliable methods to quantify the invasiveness of prostate cancer, which is of great significance for risk assessment and treatment planning for patients. However, the task of automating Gleason grading is difficult because of the complexity of pathological images of prostate cancer. This paper presents an automated Gleason grading and Gleason pattern region segmentation method based on deep learning for pathological images of prostate cancer. An architecture combining the atrous spatial pyramid pooling and the multiscale standard convolution is proposed for the segmentation of the Gleason pattern region to get accurate Gleason grading. In addition, the postprocessing procedure based on conditional random fields is applied to the prediction. The quantitative experiments on 1211 prostate cancer tissue microarrays demonstrate that our results have a high correlation with the manual segmentations. The mean intersection over union and the overall pixel accuracy for the Gleason pattern region are 77.29% and 89.51%, respectively. Furthermore, the results of the automatic Gleason grading were comparable to the results of experienced pathologists. The inter-annotator agreements between the model and the pathologists, quantified via Cohen's quadratic kappa statistic, was 0.77 on average. Our study shows that the method of combining different deep neural network architectures is suitable for more objective and reproducible Gleason grading of prostate cancer." @default.
- W3037100389 created "2020-07-02" @default.
- W3037100389 creator A5011132245 @default.
- W3037100389 creator A5030921116 @default.
- W3037100389 creator A5048379858 @default.
- W3037100389 creator A5048427415 @default.
- W3037100389 creator A5071773009 @default.
- W3037100389 creator A5073125952 @default.
- W3037100389 creator A5077709558 @default.
- W3037100389 date "2020-01-01" @default.
- W3037100389 modified "2023-10-14" @default.
- W3037100389 title "Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer" @default.
- W3037100389 cites W1570613334 @default.
- W3037100389 cites W1802872116 @default.
- W3037100389 cites W1903029394 @default.
- W3037100389 cites W1979332931 @default.
- W3037100389 cites W1992733301 @default.
- W3037100389 cites W1993760967 @default.
- W3037100389 cites W1998118468 @default.
- W3037100389 cites W2006115709 @default.
- W3037100389 cites W2009626029 @default.
- W3037100389 cites W2011120797 @default.
- W3037100389 cites W2037227137 @default.
- W3037100389 cites W2044703319 @default.
- W3037100389 cites W2053154970 @default.
- W3037100389 cites W2071428121 @default.
- W3037100389 cites W2092515684 @default.
- W3037100389 cites W2127343074 @default.
- W3037100389 cites W2134993189 @default.
- W3037100389 cites W2146655125 @default.
- W3037100389 cites W2168033859 @default.
- W3037100389 cites W2230484809 @default.
- W3037100389 cites W2234007727 @default.
- W3037100389 cites W2235523093 @default.
- W3037100389 cites W2252728384 @default.
- W3037100389 cites W2294284738 @default.
- W3037100389 cites W2329994349 @default.
- W3037100389 cites W2345010043 @default.
- W3037100389 cites W2412782625 @default.
- W3037100389 cites W2561981131 @default.
- W3037100389 cites W2574038793 @default.
- W3037100389 cites W2734776202 @default.
- W3037100389 cites W2772907685 @default.
- W3037100389 cites W2807875680 @default.
- W3037100389 cites W2889848969 @default.
- W3037100389 cites W2892938835 @default.
- W3037100389 cites W2893691907 @default.
- W3037100389 cites W2898020899 @default.
- W3037100389 cites W2901612843 @default.
- W3037100389 cites W2919115771 @default.
- W3037100389 cites W2921689573 @default.
- W3037100389 cites W2945092046 @default.
- W3037100389 cites W2949226441 @default.
- W3037100389 cites W2963150697 @default.
- W3037100389 cites W2964088022 @default.
- W3037100389 cites W2972435376 @default.
- W3037100389 cites W2978639826 @default.
- W3037100389 cites W2999091210 @default.
- W3037100389 cites W2999171691 @default.
- W3037100389 doi "https://doi.org/10.1109/access.2020.3005180" @default.
- W3037100389 hasPublicationYear "2020" @default.
- W3037100389 type Work @default.
- W3037100389 sameAs 3037100389 @default.
- W3037100389 citedByCount "19" @default.
- W3037100389 countsByYear W30371003892021 @default.
- W3037100389 countsByYear W30371003892022 @default.
- W3037100389 crossrefType "journal-article" @default.
- W3037100389 hasAuthorship W3037100389A5011132245 @default.
- W3037100389 hasAuthorship W3037100389A5030921116 @default.
- W3037100389 hasAuthorship W3037100389A5048379858 @default.
- W3037100389 hasAuthorship W3037100389A5048427415 @default.
- W3037100389 hasAuthorship W3037100389A5071773009 @default.
- W3037100389 hasAuthorship W3037100389A5073125952 @default.
- W3037100389 hasAuthorship W3037100389A5077709558 @default.
- W3037100389 hasBestOaLocation W30371003891 @default.
- W3037100389 hasConcept C121608353 @default.
- W3037100389 hasConcept C126322002 @default.
- W3037100389 hasConcept C127413603 @default.
- W3037100389 hasConcept C147176958 @default.
- W3037100389 hasConcept C153180895 @default.
- W3037100389 hasConcept C154945302 @default.
- W3037100389 hasConcept C2776235491 @default.
- W3037100389 hasConcept C2777286243 @default.
- W3037100389 hasConcept C2779466945 @default.
- W3037100389 hasConcept C2780192828 @default.
- W3037100389 hasConcept C41008148 @default.
- W3037100389 hasConcept C71924100 @default.
- W3037100389 hasConcept C89600930 @default.
- W3037100389 hasConceptScore W3037100389C121608353 @default.
- W3037100389 hasConceptScore W3037100389C126322002 @default.
- W3037100389 hasConceptScore W3037100389C127413603 @default.
- W3037100389 hasConceptScore W3037100389C147176958 @default.
- W3037100389 hasConceptScore W3037100389C153180895 @default.
- W3037100389 hasConceptScore W3037100389C154945302 @default.
- W3037100389 hasConceptScore W3037100389C2776235491 @default.
- W3037100389 hasConceptScore W3037100389C2777286243 @default.
- W3037100389 hasConceptScore W3037100389C2779466945 @default.
- W3037100389 hasConceptScore W3037100389C2780192828 @default.