Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037146579> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3037146579 endingPage "32" @default.
- W3037146579 startingPage "22" @default.
- W3037146579 abstract "Heart sound classification plays a vital role in the early detection of cardiovascular disorders, especially for small primary health care clinics. Despite that much progress has been made for heart sound classification in recent years, most of them are based on conventional segmented features and shallow structure based classifiers. These conventional acoustic representation and classification methods may be insufficient in characterizing heart sound, and generally suffer from a degraded performance due to the complicated and changeable cardiac acoustic environment. In this paper, we propose a new heart sound classification method based on improved Mel-frequency cepstrum coefficient (MFCC) features and convolutional recurrent neural networks. The Mel-frequency cepstrums are firstly calculated without dividing the heart sound signal. A new improved feature extraction scheme based on MFCC is proposed to elaborate the dynamic characteristics among consecutive heart sound signals. Finally, the MFCC-based features are fed to a deep convolutional and recurrent neural network (CRNN) for feature learning and later classification task. The proposed deep learning framework can take advantage of the encoded local characteristics extracted from the convolutional neural network (CNN) and the long-term dependencies captured by the recurrent neural network (RNN). Comprehensive studies on the performance of different network parameters and different network connection strategies are presented in this paper. Performance comparisons with state-of-the-art algorithms are given for discussions. Experiments show that, for the two-class classification problem (pathological or non-pathological), a classification accuracy of 98% has been achieved on the 2016 PhysioNet/CinC Challenge database." @default.
- W3037146579 created "2020-07-02" @default.
- W3037146579 creator A5001938430 @default.
- W3037146579 creator A5015599512 @default.
- W3037146579 creator A5023097295 @default.
- W3037146579 creator A5030955032 @default.
- W3037146579 creator A5053217157 @default.
- W3037146579 creator A5074063024 @default.
- W3037146579 date "2020-10-01" @default.
- W3037146579 modified "2023-10-17" @default.
- W3037146579 title "Heart sound classification based on improved MFCC features and convolutional recurrent neural networks" @default.
- W3037146579 cites W1897395150 @default.
- W3037146579 cites W1957473367 @default.
- W3037146579 cites W1982159013 @default.
- W3037146579 cites W2010662891 @default.
- W3037146579 cites W2064675550 @default.
- W3037146579 cites W2107216691 @default.
- W3037146579 cites W2109723817 @default.
- W3037146579 cites W2120578902 @default.
- W3037146579 cites W2160423852 @default.
- W3037146579 cites W2162451429 @default.
- W3037146579 cites W2198584637 @default.
- W3037146579 cites W2263065115 @default.
- W3037146579 cites W2557139718 @default.
- W3037146579 cites W2735987108 @default.
- W3037146579 cites W2737907540 @default.
- W3037146579 cites W2758244442 @default.
- W3037146579 cites W2766296277 @default.
- W3037146579 cites W2767186681 @default.
- W3037146579 cites W2804483946 @default.
- W3037146579 cites W2811161392 @default.
- W3037146579 cites W2919115771 @default.
- W3037146579 doi "https://doi.org/10.1016/j.neunet.2020.06.015" @default.
- W3037146579 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32589588" @default.
- W3037146579 hasPublicationYear "2020" @default.
- W3037146579 type Work @default.
- W3037146579 sameAs 3037146579 @default.
- W3037146579 citedByCount "127" @default.
- W3037146579 countsByYear W30371465792020 @default.
- W3037146579 countsByYear W30371465792021 @default.
- W3037146579 countsByYear W30371465792022 @default.
- W3037146579 countsByYear W30371465792023 @default.
- W3037146579 crossrefType "journal-article" @default.
- W3037146579 hasAuthorship W3037146579A5001938430 @default.
- W3037146579 hasAuthorship W3037146579A5015599512 @default.
- W3037146579 hasAuthorship W3037146579A5023097295 @default.
- W3037146579 hasAuthorship W3037146579A5030955032 @default.
- W3037146579 hasAuthorship W3037146579A5053217157 @default.
- W3037146579 hasAuthorship W3037146579A5074063024 @default.
- W3037146579 hasConcept C108583219 @default.
- W3037146579 hasConcept C138885662 @default.
- W3037146579 hasConcept C147168706 @default.
- W3037146579 hasConcept C151989614 @default.
- W3037146579 hasConcept C153180895 @default.
- W3037146579 hasConcept C154945302 @default.
- W3037146579 hasConcept C2776401178 @default.
- W3037146579 hasConcept C28490314 @default.
- W3037146579 hasConcept C41008148 @default.
- W3037146579 hasConcept C41895202 @default.
- W3037146579 hasConcept C50644808 @default.
- W3037146579 hasConcept C52622490 @default.
- W3037146579 hasConcept C81363708 @default.
- W3037146579 hasConcept C88485024 @default.
- W3037146579 hasConceptScore W3037146579C108583219 @default.
- W3037146579 hasConceptScore W3037146579C138885662 @default.
- W3037146579 hasConceptScore W3037146579C147168706 @default.
- W3037146579 hasConceptScore W3037146579C151989614 @default.
- W3037146579 hasConceptScore W3037146579C153180895 @default.
- W3037146579 hasConceptScore W3037146579C154945302 @default.
- W3037146579 hasConceptScore W3037146579C2776401178 @default.
- W3037146579 hasConceptScore W3037146579C28490314 @default.
- W3037146579 hasConceptScore W3037146579C41008148 @default.
- W3037146579 hasConceptScore W3037146579C41895202 @default.
- W3037146579 hasConceptScore W3037146579C50644808 @default.
- W3037146579 hasConceptScore W3037146579C52622490 @default.
- W3037146579 hasConceptScore W3037146579C81363708 @default.
- W3037146579 hasConceptScore W3037146579C88485024 @default.
- W3037146579 hasFunder F4320321001 @default.
- W3037146579 hasLocation W30371465791 @default.
- W3037146579 hasLocation W30371465792 @default.
- W3037146579 hasOpenAccess W3037146579 @default.
- W3037146579 hasPrimaryLocation W30371465791 @default.
- W3037146579 hasRelatedWork W1679636228 @default.
- W3037146579 hasRelatedWork W2148609665 @default.
- W3037146579 hasRelatedWork W2279398222 @default.
- W3037146579 hasRelatedWork W2406522397 @default.
- W3037146579 hasRelatedWork W2732542196 @default.
- W3037146579 hasRelatedWork W2738221750 @default.
- W3037146579 hasRelatedWork W2773120646 @default.
- W3037146579 hasRelatedWork W3011074480 @default.
- W3037146579 hasRelatedWork W40124310 @default.
- W3037146579 hasRelatedWork W4299822940 @default.
- W3037146579 hasVolume "130" @default.
- W3037146579 isParatext "false" @default.
- W3037146579 isRetracted "false" @default.
- W3037146579 magId "3037146579" @default.
- W3037146579 workType "article" @default.