Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037153454> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3037153454 abstract "Deep learning has achieved spectacular performance in image and speech recognition and synthesis. It outperforms other machine learning algorithms in problems where large amounts of data are available. In the area of measurement technology, instruments based on the photonic time stretch have established record real-time measurement throughput in spectroscopy, optical coherence tomography, and imaging flow cytometry. These extreme-throughput instruments generate approximately 1 Tbit/s of continuous measurement data and have led to the discovery of rare phenomena in nonlinear and complex systems as well as new types of biomedical instruments. Owing to the abundance of data they generate, time-stretch instruments are a natural fit to deep learning classification. Previously we had shown that high-throughput label-free cell classification with high accuracy can be achieved through a combination of time-stretch microscopy, image processing and feature extraction, followed by deep learning for finding cancer cells in the blood. Such a technology holds promise for early detection of primary cancer or metastasis. Here we describe a new deep learning pipeline, which entirely avoids the slow and computationally costly signal processing and feature extraction steps by a convolutional neural network that directly operates on the measured signals. The improvement in computational efficiency enables low-latency inference and makes this pipeline suitable for cell sorting via deep learning. Our neural network takes less than a few milliseconds to classify the cells, fast enough to provide a decision to a cell sorter for real-time separation of individual target cells. We demonstrate the applicability of our new method in the classification of OT-II white blood cells and SW-480 epithelial cancer cells with more than 95% accuracy in a label-free fashion." @default.
- W3037153454 created "2020-07-02" @default.
- W3037153454 creator A5006328474 @default.
- W3037153454 creator A5057807483 @default.
- W3037153454 creator A5060914310 @default.
- W3037153454 creator A5064111148 @default.
- W3037153454 creator A5065357028 @default.
- W3037153454 creator A5075716358 @default.
- W3037153454 date "2019-04-09" @default.
- W3037153454 modified "2023-09-26" @default.
- W3037153454 title "Deep Cytometry" @default.
- W3037153454 hasPublicationYear "2019" @default.
- W3037153454 type Work @default.
- W3037153454 sameAs 3037153454 @default.
- W3037153454 citedByCount "0" @default.
- W3037153454 crossrefType "posted-content" @default.
- W3037153454 hasAuthorship W3037153454A5006328474 @default.
- W3037153454 hasAuthorship W3037153454A5057807483 @default.
- W3037153454 hasAuthorship W3037153454A5060914310 @default.
- W3037153454 hasAuthorship W3037153454A5064111148 @default.
- W3037153454 hasAuthorship W3037153454A5065357028 @default.
- W3037153454 hasAuthorship W3037153454A5075716358 @default.
- W3037153454 hasConcept C108583219 @default.
- W3037153454 hasConcept C119857082 @default.
- W3037153454 hasConcept C138885662 @default.
- W3037153454 hasConcept C153180895 @default.
- W3037153454 hasConcept C154945302 @default.
- W3037153454 hasConcept C157764524 @default.
- W3037153454 hasConcept C199360897 @default.
- W3037153454 hasConcept C2776401178 @default.
- W3037153454 hasConcept C41008148 @default.
- W3037153454 hasConcept C41895202 @default.
- W3037153454 hasConcept C43521106 @default.
- W3037153454 hasConcept C52622490 @default.
- W3037153454 hasConcept C555944384 @default.
- W3037153454 hasConcept C76155785 @default.
- W3037153454 hasConcept C81363708 @default.
- W3037153454 hasConceptScore W3037153454C108583219 @default.
- W3037153454 hasConceptScore W3037153454C119857082 @default.
- W3037153454 hasConceptScore W3037153454C138885662 @default.
- W3037153454 hasConceptScore W3037153454C153180895 @default.
- W3037153454 hasConceptScore W3037153454C154945302 @default.
- W3037153454 hasConceptScore W3037153454C157764524 @default.
- W3037153454 hasConceptScore W3037153454C199360897 @default.
- W3037153454 hasConceptScore W3037153454C2776401178 @default.
- W3037153454 hasConceptScore W3037153454C41008148 @default.
- W3037153454 hasConceptScore W3037153454C41895202 @default.
- W3037153454 hasConceptScore W3037153454C43521106 @default.
- W3037153454 hasConceptScore W3037153454C52622490 @default.
- W3037153454 hasConceptScore W3037153454C555944384 @default.
- W3037153454 hasConceptScore W3037153454C76155785 @default.
- W3037153454 hasConceptScore W3037153454C81363708 @default.
- W3037153454 hasLocation W30371534541 @default.
- W3037153454 hasOpenAccess W3037153454 @default.
- W3037153454 hasPrimaryLocation W30371534541 @default.
- W3037153454 hasRelatedWork W1921588489 @default.
- W3037153454 hasRelatedWork W2606647698 @default.
- W3037153454 hasRelatedWork W2767989635 @default.
- W3037153454 hasRelatedWork W2783948781 @default.
- W3037153454 hasRelatedWork W2903733677 @default.
- W3037153454 hasRelatedWork W2920696018 @default.
- W3037153454 hasRelatedWork W2950695830 @default.
- W3037153454 hasRelatedWork W2965490647 @default.
- W3037153454 hasRelatedWork W2993189425 @default.
- W3037153454 hasRelatedWork W3015600294 @default.
- W3037153454 hasRelatedWork W3032236177 @default.
- W3037153454 hasRelatedWork W3043409124 @default.
- W3037153454 hasRelatedWork W3082435012 @default.
- W3037153454 hasRelatedWork W3103341224 @default.
- W3037153454 hasRelatedWork W3106310718 @default.
- W3037153454 hasRelatedWork W3110179097 @default.
- W3037153454 hasRelatedWork W3190846788 @default.
- W3037153454 hasRelatedWork W3205686208 @default.
- W3037153454 hasRelatedWork W89944246 @default.
- W3037153454 hasRelatedWork W2992882606 @default.
- W3037153454 isParatext "false" @default.
- W3037153454 isRetracted "false" @default.
- W3037153454 magId "3037153454" @default.
- W3037153454 workType "article" @default.