Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037164012> ?p ?o ?g. }
- W3037164012 endingPage "13" @default.
- W3037164012 startingPage "1" @default.
- W3037164012 abstract "Non-small-cell lung cancer (NSCLC) patients often develop bone metastases (BM), and the overall survival for these patients is usually perishing. However, a model with high accuracy for predicting the survival of NSCLC with BM is still lacking. Here, we aimed to establish a model based on artificial intelligence for predicting the 1-year survival rate of NSCLC with BM by using extreme gradient boosting (XGBoost), a large-scale machine learning algorithm. We selected NSCLC patients with BM between 2010 and 2015 from the Surveillance, Epidemiology, and End Results database. In total, 5973 cases were enrolled and divided into the training (<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>4183</mml:mn></mml:math>) and validation (<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>1790</mml:mn></mml:math>) sets. XGBoost, random forest, support vector machine, and logistic algorithms were used to generate predictive models. Receiver operating characteristic curves were used to evaluate and compare the predictive performance of each model. The parameters including tumor size, age, race, sex, primary site, histological subtype, grade, laterality, T stage, N stage, surgery, radiotherapy, chemotherapy, distant metastases to other sites (lung, brain, and liver), and marital status were selected to construct all predictive models. The XGBoost model had a better performance in both training and validation sets as compared with other models in terms of accuracy. Our data suggested that the XGBoost model is the most precise and personalized tool for predicting the 1-year survival rate for NSCLC patients with BM. This model can help the clinicians to design more rational and effective therapeutic strategies." @default.
- W3037164012 created "2020-07-02" @default.
- W3037164012 creator A5005156382 @default.
- W3037164012 creator A5024254953 @default.
- W3037164012 creator A5031981905 @default.
- W3037164012 creator A5064636209 @default.
- W3037164012 creator A5069248341 @default.
- W3037164012 creator A5084288265 @default.
- W3037164012 date "2020-06-28" @default.
- W3037164012 modified "2023-09-27" @default.
- W3037164012 title "An Artificial Intelligence Model for Predicting 1-Year Survival of Bone Metastases in Non-Small-Cell Lung Cancer Patients Based on XGBoost Algorithm" @default.
- W3037164012 cites W1918373897 @default.
- W3037164012 cites W2012295597 @default.
- W3037164012 cites W2026676774 @default.
- W3037164012 cites W2042759682 @default.
- W3037164012 cites W2043251685 @default.
- W3037164012 cites W2050421546 @default.
- W3037164012 cites W2058408106 @default.
- W3037164012 cites W2084460361 @default.
- W3037164012 cites W2088518437 @default.
- W3037164012 cites W2100912832 @default.
- W3037164012 cites W2132966617 @default.
- W3037164012 cites W2135631135 @default.
- W3037164012 cites W2153477391 @default.
- W3037164012 cites W2153505392 @default.
- W3037164012 cites W2169067777 @default.
- W3037164012 cites W2461196065 @default.
- W3037164012 cites W2521763233 @default.
- W3037164012 cites W2539415518 @default.
- W3037164012 cites W2606665849 @default.
- W3037164012 cites W2747294052 @default.
- W3037164012 cites W2770911915 @default.
- W3037164012 cites W2883890283 @default.
- W3037164012 cites W2897032717 @default.
- W3037164012 cites W2900869942 @default.
- W3037164012 cites W2904211489 @default.
- W3037164012 cites W2907398290 @default.
- W3037164012 cites W2913003968 @default.
- W3037164012 cites W2921489411 @default.
- W3037164012 cites W2940010972 @default.
- W3037164012 cites W2956540672 @default.
- W3037164012 cites W2971173751 @default.
- W3037164012 cites W2972710048 @default.
- W3037164012 cites W2989024456 @default.
- W3037164012 cites W3007001459 @default.
- W3037164012 doi "https://doi.org/10.1155/2020/3462363" @default.
- W3037164012 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7338972" @default.
- W3037164012 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32685470" @default.
- W3037164012 hasPublicationYear "2020" @default.
- W3037164012 type Work @default.
- W3037164012 sameAs 3037164012 @default.
- W3037164012 citedByCount "15" @default.
- W3037164012 countsByYear W30371640122021 @default.
- W3037164012 countsByYear W30371640122022 @default.
- W3037164012 countsByYear W30371640122023 @default.
- W3037164012 crossrefType "journal-article" @default.
- W3037164012 hasAuthorship W3037164012A5005156382 @default.
- W3037164012 hasAuthorship W3037164012A5024254953 @default.
- W3037164012 hasAuthorship W3037164012A5031981905 @default.
- W3037164012 hasAuthorship W3037164012A5064636209 @default.
- W3037164012 hasAuthorship W3037164012A5069248341 @default.
- W3037164012 hasAuthorship W3037164012A5084288265 @default.
- W3037164012 hasBestOaLocation W30371640121 @default.
- W3037164012 hasConcept C11413529 @default.
- W3037164012 hasConcept C119857082 @default.
- W3037164012 hasConcept C12267149 @default.
- W3037164012 hasConcept C126322002 @default.
- W3037164012 hasConcept C143998085 @default.
- W3037164012 hasConcept C151956035 @default.
- W3037164012 hasConcept C154945302 @default.
- W3037164012 hasConcept C41008148 @default.
- W3037164012 hasConcept C71924100 @default.
- W3037164012 hasConcept C77088390 @default.
- W3037164012 hasConceptScore W3037164012C11413529 @default.
- W3037164012 hasConceptScore W3037164012C119857082 @default.
- W3037164012 hasConceptScore W3037164012C12267149 @default.
- W3037164012 hasConceptScore W3037164012C126322002 @default.
- W3037164012 hasConceptScore W3037164012C143998085 @default.
- W3037164012 hasConceptScore W3037164012C151956035 @default.
- W3037164012 hasConceptScore W3037164012C154945302 @default.
- W3037164012 hasConceptScore W3037164012C41008148 @default.
- W3037164012 hasConceptScore W3037164012C71924100 @default.
- W3037164012 hasConceptScore W3037164012C77088390 @default.
- W3037164012 hasLocation W30371640121 @default.
- W3037164012 hasLocation W30371640122 @default.
- W3037164012 hasOpenAccess W3037164012 @default.
- W3037164012 hasPrimaryLocation W30371640121 @default.
- W3037164012 hasRelatedWork W1996541855 @default.
- W3037164012 hasRelatedWork W2101819884 @default.
- W3037164012 hasRelatedWork W2937631562 @default.
- W3037164012 hasRelatedWork W2979979539 @default.
- W3037164012 hasRelatedWork W3136979370 @default.
- W3037164012 hasRelatedWork W3194539120 @default.
- W3037164012 hasRelatedWork W3195168932 @default.
- W3037164012 hasRelatedWork W4205958290 @default.
- W3037164012 hasRelatedWork W4316658362 @default.
- W3037164012 hasRelatedWork W4361795583 @default.
- W3037164012 hasVolume "2020" @default.