Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037237975> ?p ?o ?g. }
- W3037237975 endingPage "107457" @default.
- W3037237975 startingPage "107457" @default.
- W3037237975 abstract "Pilgrim is a program written in Python and designed to use direct dynamics in the calculation of thermal rate constants of chemical reactions by the variational transition state theory (VTST), based on electronic structure calculations for the potential energy surface. Pilgrim can also simulate reaction mechanisms using kinetic Monte Carlo (KMC). For reaction processes with many elementary steps, the rate constant of each of these steps can be calculated by means of conventional transition state theory (TST) or by using VTST. In the current version, Pilgrim can evaluate thermal rates using the canonical version of reaction-path VTST, which requires the calculation of the minimum energy path (MEP) associated with each elementary step or transition structure. Multi-dimensional quantum effects can be incorporated through the small-curvature tunneling (SCT) approximation. These methodologies are available both for reactions involving a single structure of the reactants and the transition state and also for reactions involving flexible molecules with multiple conformations of the reactant and/or of the transition state. For systems with many conformers, the program can evaluate each of the elementary reaction rate constants by multipath canonical VTST or multi-structural VTST. Moreover, the reactant can be unimolecular or bimolecular. Torsional anharmonicity can be incorporated through either the MSTor or the Q2DTor programs. Dual-level calculations are also available in Pilgrim: automatic high-level single-point energies can be used to correct the energy of reactants, transition states, products, and MEP points using the interpolated single-point energies (ISPE) algorithm. When the rate constants of all the chemical processes of interest are known, by means of their calculation using Pilgrim or alternatively through analytical fits to the rate constants as functions of temperature, it is possible to simulate a multistep mechanism under specified laboratory conditions using KMC. This algorithm allows performing a kinetic simulation to monitor the evolution of each chemical species with time and obtain the product yields. Program summary: Program Title: Pilgrim CPC Library link to program files: http://dx.doi.org/10.17632/24cj4dwxvg.1 Developer's repository link: https://github.com/cathedralpkg/pilgrim/releases; https://comp.chem.umn.edu/pilgrim; https://conservancy.umn.edu/handle/11299/166578 Licensing provisions: MIT Programming language: Python 3 Nature of problem: Calculation of thermal rate constants for bimolecular and unimolecular chemical reactions and simulation of reaction mechanisms Solution method: The program uses variational transition state theory to calculate thermal rate constants and kinetic Monte Carlo to simulate reaction mechanisms. Restrictions and unusual features: The program cannot treat reactions without saddle points. Unimolecular reactions are calculated only in the high-pressure limit. Direct dynamics calculations with Pilgrim require an electronic structure package to be supplied by the user; currently, Pilgrim supports the Gaussian [Frisch et al. (2003), Frisch et al. (2016a), Frisch et al. (2016b)] and Orca [Neese (2011)] electronic structure packages. Pilgrim has an especially powerful suite of options for handling torsional anharmonicity and multistructural effects." @default.
- W3037237975 created "2020-07-02" @default.
- W3037237975 creator A5001452719 @default.
- W3037237975 creator A5061717048 @default.
- W3037237975 creator A5077061729 @default.
- W3037237975 date "2020-11-01" @default.
- W3037237975 modified "2023-10-16" @default.
- W3037237975 title "Pilgrim: A thermal rate constant calculator and a chemical kinetics simulator" @default.
- W3037237975 cites W1498521846 @default.
- W3037237975 cites W1512716428 @default.
- W3037237975 cites W1794909495 @default.
- W3037237975 cites W1967066099 @default.
- W3037237975 cites W1968489166 @default.
- W3037237975 cites W1969148839 @default.
- W3037237975 cites W1970638471 @default.
- W3037237975 cites W1971028212 @default.
- W3037237975 cites W1971577325 @default.
- W3037237975 cites W1972295548 @default.
- W3037237975 cites W1974409057 @default.
- W3037237975 cites W1981991118 @default.
- W3037237975 cites W1982768731 @default.
- W3037237975 cites W1991100255 @default.
- W3037237975 cites W1991503789 @default.
- W3037237975 cites W1997484075 @default.
- W3037237975 cites W1997565313 @default.
- W3037237975 cites W2003439657 @default.
- W3037237975 cites W2006787354 @default.
- W3037237975 cites W2012900934 @default.
- W3037237975 cites W2014562537 @default.
- W3037237975 cites W2016435279 @default.
- W3037237975 cites W2019080651 @default.
- W3037237975 cites W2019867440 @default.
- W3037237975 cites W2021206106 @default.
- W3037237975 cites W2021473391 @default.
- W3037237975 cites W2025396755 @default.
- W3037237975 cites W2030170689 @default.
- W3037237975 cites W2035074293 @default.
- W3037237975 cites W2035152429 @default.
- W3037237975 cites W2035196826 @default.
- W3037237975 cites W2035380487 @default.
- W3037237975 cites W2036575693 @default.
- W3037237975 cites W2036618001 @default.
- W3037237975 cites W2044115606 @default.
- W3037237975 cites W2048757079 @default.
- W3037237975 cites W2049507583 @default.
- W3037237975 cites W2057550644 @default.
- W3037237975 cites W2057980421 @default.
- W3037237975 cites W2058668130 @default.
- W3037237975 cites W2059605663 @default.
- W3037237975 cites W2059931778 @default.
- W3037237975 cites W2062834578 @default.
- W3037237975 cites W2065972590 @default.
- W3037237975 cites W2067557952 @default.
- W3037237975 cites W2067718414 @default.
- W3037237975 cites W2069694458 @default.
- W3037237975 cites W2074186740 @default.
- W3037237975 cites W2084899010 @default.
- W3037237975 cites W2086829922 @default.
- W3037237975 cites W2087516611 @default.
- W3037237975 cites W2089155126 @default.
- W3037237975 cites W2089403525 @default.
- W3037237975 cites W2090541570 @default.
- W3037237975 cites W2094405306 @default.
- W3037237975 cites W2095917386 @default.
- W3037237975 cites W2099625498 @default.
- W3037237975 cites W2111943812 @default.
- W3037237975 cites W2132973398 @default.
- W3037237975 cites W2140871833 @default.
- W3037237975 cites W2153892299 @default.
- W3037237975 cites W2159514058 @default.
- W3037237975 cites W2163691382 @default.
- W3037237975 cites W2167154952 @default.
- W3037237975 cites W2318806314 @default.
- W3037237975 cites W2335144429 @default.
- W3037237975 cites W2732205783 @default.
- W3037237975 cites W2769154904 @default.
- W3037237975 cites W2781827178 @default.
- W3037237975 cites W2804548879 @default.
- W3037237975 cites W2808566965 @default.
- W3037237975 cites W4237427979 @default.
- W3037237975 doi "https://doi.org/10.1016/j.cpc.2020.107457" @default.
- W3037237975 hasPublicationYear "2020" @default.
- W3037237975 type Work @default.
- W3037237975 sameAs 3037237975 @default.
- W3037237975 citedByCount "24" @default.
- W3037237975 countsByYear W30372379752020 @default.
- W3037237975 countsByYear W30372379752021 @default.
- W3037237975 countsByYear W30372379752022 @default.
- W3037237975 countsByYear W30372379752023 @default.
- W3037237975 crossrefType "journal-article" @default.
- W3037237975 hasAuthorship W3037237975A5001452719 @default.
- W3037237975 hasAuthorship W3037237975A5061717048 @default.
- W3037237975 hasAuthorship W3037237975A5077061729 @default.
- W3037237975 hasBestOaLocation W30372379751 @default.
- W3037237975 hasConcept C111919701 @default.
- W3037237975 hasConcept C121332964 @default.
- W3037237975 hasConcept C148898269 @default.
- W3037237975 hasConcept C199360897 @default.