Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037241946> ?p ?o ?g. }
- W3037241946 endingPage "3618" @default.
- W3037241946 startingPage "3618" @default.
- W3037241946 abstract "Important wine quality traits such as sensory profile and color are the product of complex interactions between the soil, grapevine, the environment, management, and winemaking practices. Artificial intelligence (AI) and specifically machine learning (ML) could offer powerful tools to assess these complex interactions and their patterns through seasons to predict quality traits to winegrowers close to harvest and before winemaking. This study considered nine vintages (2008-2016) using near-infrared spectroscopy (NIR) of wines and corresponding weather and management information as inputs for artificial neural network (ANN) modeling of sensory profiles (Models 1 and 2 respectively). Furthermore, weather and management data were used as inputs to predict the color of wines (Model 3). Results showed high accuracy in the prediction of sensory profiles of vertical wine vintages using NIR (Model 1; R = 0.92; slope = 0.85), while better models were obtained using weather/management data for the prediction of sensory profiles (Model 2; R = 0.98; slope = 0.93) and wine color (Model 3; R = 0.99; slope = 0.98). For all models, there was no indication of overfitting as per ANN specific tests. These models may be used as powerful tools to winegrowers and winemakers close to harvest and before the winemaking process to maintain a determined wine style with high quality and acceptability by consumers." @default.
- W3037241946 created "2020-07-02" @default.
- W3037241946 creator A5031627534 @default.
- W3037241946 creator A5032923277 @default.
- W3037241946 creator A5036304829 @default.
- W3037241946 creator A5057098344 @default.
- W3037241946 date "2020-06-27" @default.
- W3037241946 modified "2023-10-05" @default.
- W3037241946 title "Machine Learning Modeling of Wine Sensory Profiles and Color of Vertical Vintages of Pinot Noir Based on Chemical Fingerprinting, Weather and Management Data" @default.
- W3037241946 cites W114693360 @default.
- W3037241946 cites W1566088103 @default.
- W3037241946 cites W1617356937 @default.
- W3037241946 cites W1896993240 @default.
- W3037241946 cites W1968792246 @default.
- W3037241946 cites W1972373926 @default.
- W3037241946 cites W1972546578 @default.
- W3037241946 cites W1979241560 @default.
- W3037241946 cites W1984879872 @default.
- W3037241946 cites W1992284930 @default.
- W3037241946 cites W1998471192 @default.
- W3037241946 cites W2000743228 @default.
- W3037241946 cites W2019125261 @default.
- W3037241946 cites W2022174326 @default.
- W3037241946 cites W2024406431 @default.
- W3037241946 cites W2025175820 @default.
- W3037241946 cites W2027198500 @default.
- W3037241946 cites W2031477142 @default.
- W3037241946 cites W2033747955 @default.
- W3037241946 cites W2037890214 @default.
- W3037241946 cites W2044910375 @default.
- W3037241946 cites W2046157478 @default.
- W3037241946 cites W2047138716 @default.
- W3037241946 cites W2049901509 @default.
- W3037241946 cites W2089204332 @default.
- W3037241946 cites W2093941448 @default.
- W3037241946 cites W2107459011 @default.
- W3037241946 cites W2109605358 @default.
- W3037241946 cites W2111585502 @default.
- W3037241946 cites W2113884910 @default.
- W3037241946 cites W2122956232 @default.
- W3037241946 cites W2133270441 @default.
- W3037241946 cites W2134524598 @default.
- W3037241946 cites W2155460607 @default.
- W3037241946 cites W2158265449 @default.
- W3037241946 cites W2160642212 @default.
- W3037241946 cites W2171767172 @default.
- W3037241946 cites W2187554736 @default.
- W3037241946 cites W2257783695 @default.
- W3037241946 cites W2274792031 @default.
- W3037241946 cites W2462593658 @default.
- W3037241946 cites W2495326970 @default.
- W3037241946 cites W2516948757 @default.
- W3037241946 cites W2535392518 @default.
- W3037241946 cites W2677169684 @default.
- W3037241946 cites W2766390436 @default.
- W3037241946 cites W2790861445 @default.
- W3037241946 cites W2791209575 @default.
- W3037241946 cites W2794757393 @default.
- W3037241946 cites W2801169051 @default.
- W3037241946 cites W2805307317 @default.
- W3037241946 cites W2889692310 @default.
- W3037241946 cites W289980511 @default.
- W3037241946 cites W2905144705 @default.
- W3037241946 cites W2943376168 @default.
- W3037241946 cites W2955732900 @default.
- W3037241946 cites W2958439264 @default.
- W3037241946 cites W2973268949 @default.
- W3037241946 cites W2997024330 @default.
- W3037241946 cites W2998807167 @default.
- W3037241946 cites W3028445508 @default.
- W3037241946 cites W3035006305 @default.
- W3037241946 cites W71120918 @default.
- W3037241946 cites W751718722 @default.
- W3037241946 doi "https://doi.org/10.3390/s20133618" @default.
- W3037241946 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7374325" @default.
- W3037241946 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32605057" @default.
- W3037241946 hasPublicationYear "2020" @default.
- W3037241946 type Work @default.
- W3037241946 sameAs 3037241946 @default.
- W3037241946 citedByCount "12" @default.
- W3037241946 countsByYear W30372419462021 @default.
- W3037241946 countsByYear W30372419462022 @default.
- W3037241946 countsByYear W30372419462023 @default.
- W3037241946 crossrefType "journal-article" @default.
- W3037241946 hasAuthorship W3037241946A5031627534 @default.
- W3037241946 hasAuthorship W3037241946A5032923277 @default.
- W3037241946 hasAuthorship W3037241946A5036304829 @default.
- W3037241946 hasAuthorship W3037241946A5057098344 @default.
- W3037241946 hasBestOaLocation W30372419461 @default.
- W3037241946 hasConcept C119857082 @default.
- W3037241946 hasConcept C154945302 @default.
- W3037241946 hasConcept C185592680 @default.
- W3037241946 hasConcept C22019652 @default.
- W3037241946 hasConcept C2779737534 @default.
- W3037241946 hasConcept C31903555 @default.
- W3037241946 hasConcept C39432304 @default.
- W3037241946 hasConcept C41008148 @default.
- W3037241946 hasConcept C45804977 @default.