Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037258624> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3037258624 endingPage "42" @default.
- W3037258624 startingPage "18" @default.
- W3037258624 abstract "Advancements in biometrics have attained relatively high recognition rates. However, the need for a biometric system that is reliable, robust, and convenient remains. Systems that use palmprints (PP) for verification have a number of benefits including stable line features, reduced distortion and simple self-positioning. Dorsal hand veins (DHVs) are distinctive for every person, such that even identical twins have different DHVs. DHVs appear to maintain stability over time. In the past, different features algorithms were used to implement palmprint (PP) and dorsal hand vein (DHV) systems. Previous systems relied on handcrafted algorithms. The advancements of deep learning (DL) in the features learned by the convolutional neural network (CNN) has led to its application in PP and DHV recognition systems. In this article, a multimodal biometric system based on PP and DHV using (VGG16, VGG19 and AlexNet) CNN models is proposed. The proposed system is uses two approaches: feature level fusion (FLF) and Score level fusion (SLF). In the first approach, the features from PP and DHV are extracted with CNN models. These extracted features are then fused using serial or parallel fusion and used to train error-correcting output codes (ECOC) with a support vector machine (SVM) for classification. In the second approach, the fusion at score level is done with sum, max, and product methods by applying two strategies: Transfer learning that uses CNN models for features extraction and classification for PP and DHV, then score level fusion. For the second strategy, features are extracted with CNN models for PP and DHV and used to train ECOC with SVM for classification, then score level fusion. The system was tested using two DHV databases and one PP database. The multimodal system is tested two times by repeating PP database for each DHV database. The system achieved very high accuracy rate." @default.
- W3037258624 created "2020-07-02" @default.
- W3037258624 creator A5025860050 @default.
- W3037258624 creator A5048358302 @default.
- W3037258624 date "2020-07-01" @default.
- W3037258624 modified "2023-10-11" @default.
- W3037258624 title "Palmprint And Dorsal Hand Vein Multi-Modal Biometric Fusion Using Deep Learning" @default.
- W3037258624 cites W1649885719 @default.
- W3037258624 cites W1963631516 @default.
- W3037258624 cites W1968113673 @default.
- W3037258624 cites W1968517241 @default.
- W3037258624 cites W1970057813 @default.
- W3037258624 cites W1981968236 @default.
- W3037258624 cites W2003719799 @default.
- W3037258624 cites W2033149918 @default.
- W3037258624 cites W2051016413 @default.
- W3037258624 cites W2076063813 @default.
- W3037258624 cites W2082397506 @default.
- W3037258624 cites W2099815114 @default.
- W3037258624 cites W2125418538 @default.
- W3037258624 cites W2160639198 @default.
- W3037258624 cites W2185482828 @default.
- W3037258624 cites W2415226946 @default.
- W3037258624 cites W2490513603 @default.
- W3037258624 cites W2520194964 @default.
- W3037258624 cites W2522203259 @default.
- W3037258624 cites W2538875503 @default.
- W3037258624 cites W2545817400 @default.
- W3037258624 cites W2563674783 @default.
- W3037258624 cites W2752788177 @default.
- W3037258624 cites W2753372987 @default.
- W3037258624 cites W2757862359 @default.
- W3037258624 cites W2761668861 @default.
- W3037258624 cites W2766280296 @default.
- W3037258624 cites W2773594570 @default.
- W3037258624 cites W2808587114 @default.
- W3037258624 cites W2893309415 @default.
- W3037258624 cites W2919115771 @default.
- W3037258624 cites W2938788221 @default.
- W3037258624 cites W3102431071 @default.
- W3037258624 cites W4231109964 @default.
- W3037258624 cites W783096245 @default.
- W3037258624 doi "https://doi.org/10.4018/ijaiml.2020070102" @default.
- W3037258624 hasPublicationYear "2020" @default.
- W3037258624 type Work @default.
- W3037258624 sameAs 3037258624 @default.
- W3037258624 citedByCount "1" @default.
- W3037258624 countsByYear W30372586242022 @default.
- W3037258624 crossrefType "journal-article" @default.
- W3037258624 hasAuthorship W3037258624A5025860050 @default.
- W3037258624 hasAuthorship W3037258624A5048358302 @default.
- W3037258624 hasBestOaLocation W30372586241 @default.
- W3037258624 hasConcept C108583219 @default.
- W3037258624 hasConcept C112972136 @default.
- W3037258624 hasConcept C119857082 @default.
- W3037258624 hasConcept C12267149 @default.
- W3037258624 hasConcept C138885662 @default.
- W3037258624 hasConcept C153180895 @default.
- W3037258624 hasConcept C154945302 @default.
- W3037258624 hasConcept C158525013 @default.
- W3037258624 hasConcept C184297639 @default.
- W3037258624 hasConcept C2776401178 @default.
- W3037258624 hasConcept C41008148 @default.
- W3037258624 hasConcept C41895202 @default.
- W3037258624 hasConcept C81363708 @default.
- W3037258624 hasConceptScore W3037258624C108583219 @default.
- W3037258624 hasConceptScore W3037258624C112972136 @default.
- W3037258624 hasConceptScore W3037258624C119857082 @default.
- W3037258624 hasConceptScore W3037258624C12267149 @default.
- W3037258624 hasConceptScore W3037258624C138885662 @default.
- W3037258624 hasConceptScore W3037258624C153180895 @default.
- W3037258624 hasConceptScore W3037258624C154945302 @default.
- W3037258624 hasConceptScore W3037258624C158525013 @default.
- W3037258624 hasConceptScore W3037258624C184297639 @default.
- W3037258624 hasConceptScore W3037258624C2776401178 @default.
- W3037258624 hasConceptScore W3037258624C41008148 @default.
- W3037258624 hasConceptScore W3037258624C41895202 @default.
- W3037258624 hasConceptScore W3037258624C81363708 @default.
- W3037258624 hasIssue "2" @default.
- W3037258624 hasLocation W30372586241 @default.
- W3037258624 hasOpenAccess W3037258624 @default.
- W3037258624 hasPrimaryLocation W30372586241 @default.
- W3037258624 hasRelatedWork W2076845124 @default.
- W3037258624 hasRelatedWork W2183964146 @default.
- W3037258624 hasRelatedWork W2379932303 @default.
- W3037258624 hasRelatedWork W3029198973 @default.
- W3037258624 hasRelatedWork W3133861977 @default.
- W3037258624 hasRelatedWork W3167935049 @default.
- W3037258624 hasRelatedWork W3193565141 @default.
- W3037258624 hasRelatedWork W4226493464 @default.
- W3037258624 hasRelatedWork W4300873085 @default.
- W3037258624 hasRelatedWork W4312417841 @default.
- W3037258624 hasVolume "10" @default.
- W3037258624 isParatext "false" @default.
- W3037258624 isRetracted "false" @default.
- W3037258624 magId "3037258624" @default.
- W3037258624 workType "article" @default.