Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037264857> ?p ?o ?g. }
- W3037264857 endingPage "4568" @default.
- W3037264857 startingPage "4568" @default.
- W3037264857 abstract "Current methods for the intraoperative determination of breast cancer margins commonly suffer from the insufficient accuracy, specificity and/or low speed of analysis, increasing the time and cost of operation as well the risk of cancer recurrence. The purpose of this study is to develop a method for the rapid and accurate determination of breast cancer margins using direct molecular profiling by mass spectrometry (MS). Direct molecular fingerprinting of tiny pieces of breast tissue (approximately 1 × 1 × 1 mm) is performed using a home-built tissue spray ionization source installed on a Maxis Impact quadrupole time-of-flight mass spectrometer (qTOF MS) (Bruker Daltonics, Hamburg, Germany). Statistical analysis of MS data from 50 samples of both normal and cancer tissue (from 25 patients) was performed using orthogonal projections onto latent structures discriminant analysis (OPLS-DA). Additionally, the results of OPLS classification of new 19 pieces of two tissue samples were compared with the results of histological analysis performed on the same tissues samples. The average time of analysis for one sample was about 5 min. Positive and negative ionization modes are used to provide complementary information and to find out the most informative method for a breast tissue classification. The analysis provides information on 11 lipid classes. OPLS-DA models are created for the classification of normal and cancer tissue based on the various datasets: All mass spectrometric peaks over 300 counts; peaks with a statistically significant difference of intensity determined by the Mann–Whitney U-test (p < 0.05); peaks identified as lipids; both identified and significantly different peaks. The highest values of Q2 have models built on all MS peaks and on significantly different peaks. While such models are useful for classification itself, they are of less value for building explanatory mechanisms of pathophysiology and providing a pathway analysis. Models based on identified peaks are preferable from this point of view. Results obtained by OPLS-DA classification of the tissue spray MS data of a new sample set (n = 19) revealed 100% sensitivity and specificity when compared to histological analysis, the “gold” standard for tissue classification. “All peaks” and “significantly different peaks” datasets in the positive ion mode were ideal for breast cancer tissue classification. Our results indicate the potential of tissue spray mass spectrometry for rapid, accurate and intraoperative diagnostics of breast cancer tissue as a means to reduce surgical intervention." @default.
- W3037264857 created "2020-07-02" @default.
- W3037264857 creator A5028766555 @default.
- W3037264857 creator A5032613678 @default.
- W3037264857 creator A5042790764 @default.
- W3037264857 creator A5043481998 @default.
- W3037264857 creator A5055395292 @default.
- W3037264857 creator A5056711906 @default.
- W3037264857 creator A5073085140 @default.
- W3037264857 creator A5082723030 @default.
- W3037264857 creator A5086875186 @default.
- W3037264857 creator A5089063312 @default.
- W3037264857 date "2020-06-26" @default.
- W3037264857 modified "2023-10-17" @default.
- W3037264857 title "Validation of Breast Cancer Margins by Tissue Spray Mass Spectrometry" @default.
- W3037264857 cites W1461404681 @default.
- W3037264857 cites W1553808264 @default.
- W3037264857 cites W1972782213 @default.
- W3037264857 cites W1995414086 @default.
- W3037264857 cites W2005903771 @default.
- W3037264857 cites W2009413874 @default.
- W3037264857 cites W2027947061 @default.
- W3037264857 cites W2033278243 @default.
- W3037264857 cites W2035721564 @default.
- W3037264857 cites W2044378040 @default.
- W3037264857 cites W2051683517 @default.
- W3037264857 cites W2067420088 @default.
- W3037264857 cites W2089674725 @default.
- W3037264857 cites W2096769282 @default.
- W3037264857 cites W2101603546 @default.
- W3037264857 cites W2108488321 @default.
- W3037264857 cites W2119080963 @default.
- W3037264857 cites W2130746306 @default.
- W3037264857 cites W2139939613 @default.
- W3037264857 cites W2155888582 @default.
- W3037264857 cites W2163853186 @default.
- W3037264857 cites W2273375894 @default.
- W3037264857 cites W2284200877 @default.
- W3037264857 cites W2341820027 @default.
- W3037264857 cites W2349960684 @default.
- W3037264857 cites W2516162793 @default.
- W3037264857 cites W2582016610 @default.
- W3037264857 cites W2620148926 @default.
- W3037264857 cites W2734782517 @default.
- W3037264857 cites W2750799604 @default.
- W3037264857 cites W2760438969 @default.
- W3037264857 cites W2915478882 @default.
- W3037264857 cites W2942310855 @default.
- W3037264857 cites W2968534240 @default.
- W3037264857 cites W2982516318 @default.
- W3037264857 cites W4362231430 @default.
- W3037264857 cites W2644804608 @default.
- W3037264857 doi "https://doi.org/10.3390/ijms21124568" @default.
- W3037264857 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7349349" @default.
- W3037264857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32604966" @default.
- W3037264857 hasPublicationYear "2020" @default.
- W3037264857 type Work @default.
- W3037264857 sameAs 3037264857 @default.
- W3037264857 citedByCount "7" @default.
- W3037264857 countsByYear W30372648572021 @default.
- W3037264857 countsByYear W30372648572022 @default.
- W3037264857 countsByYear W30372648572023 @default.
- W3037264857 crossrefType "journal-article" @default.
- W3037264857 hasAuthorship W3037264857A5028766555 @default.
- W3037264857 hasAuthorship W3037264857A5032613678 @default.
- W3037264857 hasAuthorship W3037264857A5042790764 @default.
- W3037264857 hasAuthorship W3037264857A5043481998 @default.
- W3037264857 hasAuthorship W3037264857A5055395292 @default.
- W3037264857 hasAuthorship W3037264857A5056711906 @default.
- W3037264857 hasAuthorship W3037264857A5073085140 @default.
- W3037264857 hasAuthorship W3037264857A5082723030 @default.
- W3037264857 hasAuthorship W3037264857A5086875186 @default.
- W3037264857 hasAuthorship W3037264857A5089063312 @default.
- W3037264857 hasBestOaLocation W30372648571 @default.
- W3037264857 hasConcept C121608353 @default.
- W3037264857 hasConcept C126322002 @default.
- W3037264857 hasConcept C142724271 @default.
- W3037264857 hasConcept C154945302 @default.
- W3037264857 hasConcept C162356407 @default.
- W3037264857 hasConcept C185592680 @default.
- W3037264857 hasConcept C3020109028 @default.
- W3037264857 hasConcept C41008148 @default.
- W3037264857 hasConcept C43617362 @default.
- W3037264857 hasConcept C530470458 @default.
- W3037264857 hasConcept C69738355 @default.
- W3037264857 hasConcept C71924100 @default.
- W3037264857 hasConceptScore W3037264857C121608353 @default.
- W3037264857 hasConceptScore W3037264857C126322002 @default.
- W3037264857 hasConceptScore W3037264857C142724271 @default.
- W3037264857 hasConceptScore W3037264857C154945302 @default.
- W3037264857 hasConceptScore W3037264857C162356407 @default.
- W3037264857 hasConceptScore W3037264857C185592680 @default.
- W3037264857 hasConceptScore W3037264857C3020109028 @default.
- W3037264857 hasConceptScore W3037264857C41008148 @default.
- W3037264857 hasConceptScore W3037264857C43617362 @default.
- W3037264857 hasConceptScore W3037264857C530470458 @default.
- W3037264857 hasConceptScore W3037264857C69738355 @default.
- W3037264857 hasConceptScore W3037264857C71924100 @default.