Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037270806> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3037270806 endingPage "116267" @default.
- W3037270806 startingPage "116254" @default.
- W3037270806 abstract "Deep-learning architectures were developed for the self-piercing riveting (SPR) process to predict the cross-sectional shape from the scalar input of the punch force. Traditionally, the SPR process is studied using a physic-based approach, including finite element modeling, but in this study, a data-driven approach consisting of two supervised deep-learning models was proposed. The first model was used for data transformation from an optical microscopic image to a material segmentation map, which characterizes the shape and location of the two sheets and the rivet by applying a convolutional neural network (CNN)-based deep-learning structure. To validate the developed models, two types of sheet combinations were tested, namely, carbon-fiber-reinforced plastic (CFRP) and galvanized dual-phase steel (GA590DP) sheets, and steel alloy (SPFC590DP) and aluminum alloy (Al5052-H32) sheets. The transformation was performed with a mean intersection-over-union of 98.50% and a mean pixel accuracy of 99.78%. The next model, which was a novel generative model based on a CNN and conditional generative adversarial network with residual blocks, was then trained to predict the cross-sectional shape from the input punch force. The predicted cross-sectional shapes were compared with the experimental results of SPR. The overall accuracy was 94.20% for CFRP-GA590DP and 96.31% for SPFC590DP-Al5052, with respect to three key geometrical indexes, namely, rivet head height, interlock length, and bottom thickness." @default.
- W3037270806 created "2020-07-02" @default.
- W3037270806 creator A5018013083 @default.
- W3037270806 creator A5030297209 @default.
- W3037270806 creator A5034876960 @default.
- W3037270806 creator A5047216169 @default.
- W3037270806 creator A5063254198 @default.
- W3037270806 date "2020-01-01" @default.
- W3037270806 modified "2023-09-26" @default.
- W3037270806 title "Deep-Learning-Based Predictive Architectures for Self-Piercing Riveting Process" @default.
- W3037270806 cites W2031489346 @default.
- W3037270806 cites W2035243309 @default.
- W3037270806 cites W2071717410 @default.
- W3037270806 cites W2100495367 @default.
- W3037270806 cites W2105953021 @default.
- W3037270806 cites W2112545175 @default.
- W3037270806 cites W2112796928 @default.
- W3037270806 cites W2118513056 @default.
- W3037270806 cites W2135407104 @default.
- W3037270806 cites W2180690345 @default.
- W3037270806 cites W2194775991 @default.
- W3037270806 cites W2283885582 @default.
- W3037270806 cites W2346383246 @default.
- W3037270806 cites W2531409750 @default.
- W3037270806 cites W2534608369 @default.
- W3037270806 cites W2593414223 @default.
- W3037270806 cites W2735938873 @default.
- W3037270806 cites W2885375664 @default.
- W3037270806 cites W2954930822 @default.
- W3037270806 cites W2963073614 @default.
- W3037270806 cites W2963420272 @default.
- W3037270806 cites W2963470893 @default.
- W3037270806 cites W2963800363 @default.
- W3037270806 cites W2964101377 @default.
- W3037270806 cites W2964309882 @default.
- W3037270806 doi "https://doi.org/10.1109/access.2020.3004337" @default.
- W3037270806 hasPublicationYear "2020" @default.
- W3037270806 type Work @default.
- W3037270806 sameAs 3037270806 @default.
- W3037270806 citedByCount "14" @default.
- W3037270806 countsByYear W30372708062021 @default.
- W3037270806 countsByYear W30372708062022 @default.
- W3037270806 countsByYear W30372708062023 @default.
- W3037270806 crossrefType "journal-article" @default.
- W3037270806 hasAuthorship W3037270806A5018013083 @default.
- W3037270806 hasAuthorship W3037270806A5030297209 @default.
- W3037270806 hasAuthorship W3037270806A5034876960 @default.
- W3037270806 hasAuthorship W3037270806A5047216169 @default.
- W3037270806 hasAuthorship W3037270806A5063254198 @default.
- W3037270806 hasBestOaLocation W30372708061 @default.
- W3037270806 hasConcept C108583219 @default.
- W3037270806 hasConcept C111919701 @default.
- W3037270806 hasConcept C153180895 @default.
- W3037270806 hasConcept C154945302 @default.
- W3037270806 hasConcept C159985019 @default.
- W3037270806 hasConcept C192562407 @default.
- W3037270806 hasConcept C41008148 @default.
- W3037270806 hasConcept C57769158 @default.
- W3037270806 hasConcept C81363708 @default.
- W3037270806 hasConcept C98045186 @default.
- W3037270806 hasConceptScore W3037270806C108583219 @default.
- W3037270806 hasConceptScore W3037270806C111919701 @default.
- W3037270806 hasConceptScore W3037270806C153180895 @default.
- W3037270806 hasConceptScore W3037270806C154945302 @default.
- W3037270806 hasConceptScore W3037270806C159985019 @default.
- W3037270806 hasConceptScore W3037270806C192562407 @default.
- W3037270806 hasConceptScore W3037270806C41008148 @default.
- W3037270806 hasConceptScore W3037270806C57769158 @default.
- W3037270806 hasConceptScore W3037270806C81363708 @default.
- W3037270806 hasConceptScore W3037270806C98045186 @default.
- W3037270806 hasLocation W30372708061 @default.
- W3037270806 hasOpenAccess W3037270806 @default.
- W3037270806 hasPrimaryLocation W30372708061 @default.
- W3037270806 hasRelatedWork W2731899572 @default.
- W3037270806 hasRelatedWork W2999805992 @default.
- W3037270806 hasRelatedWork W3011074480 @default.
- W3037270806 hasRelatedWork W3116150086 @default.
- W3037270806 hasRelatedWork W3133861977 @default.
- W3037270806 hasRelatedWork W3192840557 @default.
- W3037270806 hasRelatedWork W4200173597 @default.
- W3037270806 hasRelatedWork W4291897433 @default.
- W3037270806 hasRelatedWork W4312417841 @default.
- W3037270806 hasRelatedWork W4321369474 @default.
- W3037270806 hasVolume "8" @default.
- W3037270806 isParatext "false" @default.
- W3037270806 isRetracted "false" @default.
- W3037270806 magId "3037270806" @default.
- W3037270806 workType "article" @default.