Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037335916> ?p ?o ?g. }
- W3037335916 endingPage "4401" @default.
- W3037335916 startingPage "4383" @default.
- W3037335916 abstract "Key to any cosmic microwave background (CMB) analysis is the separation of the CMB from foreground contaminants. In this paper we present a novel implementation of Bayesian CMB component separation. We sample from the full posterior distribution using the No-U-Turn Sampler (NUTS), a gradient based sampling algorithm. Alongside this, we introduce new foreground modelling approaches. We use the mean-shift algorithm to define regions on the sky, clustering according to naively estimated foreground spectral parameters. Over these regions we adopt a complete pooling model, where we assume constant spectral parameters, and a hierarchical model, where we model individual spectral parameters as being drawn from underlying hyper-distributions. We validate the algorithm against simulations of the LiteBIRD and C-BASS experiments, with an input tensor-to-scalar ratio of $r=5times 10^{-3}$. Considering multipoles $32leqellleq 121$, we are able to recover estimates for $r$. With LiteBIRD only observations, and using the complete pooling model, we recover $r=(10pm 0.6)times 10^{-3}$. For C-BASS and LiteBIRD observations we find $r=(7.0pm 0.6)times 10^{-3}$ using the complete pooling model, and $r=(5.0pm 0.4)times 10^{-3}$ using the hierarchical model. By adopting the hierarchical model we are able to eliminate biases in our cosmological parameter estimation, and obtain lower uncertainties due to the smaller Galactic emission mask that can be adopted for power spectrum estimation. Measured by the rate of effective sample generation, NUTS offers performance improvements of $sim10^3$ over using Metropolis-Hastings to fit the complete pooling model. The efficiency of NUTS allows us to fit the more sophisticated hierarchical foreground model, that would likely be intractable with non-gradient based sampling algorithms." @default.
- W3037335916 created "2020-07-02" @default.
- W3037335916 creator A5002092482 @default.
- W3037335916 creator A5053539141 @default.
- W3037335916 creator A5086220269 @default.
- W3037335916 date "2020-06-26" @default.
- W3037335916 modified "2023-09-24" @default.
- W3037335916 title "Hierarchical Bayesian CMB component separation with the No-U-Turn Sampler" @default.
- W3037335916 cites W1487139063 @default.
- W3037335916 cites W1536497620 @default.
- W3037335916 cites W1605315179 @default.
- W3037335916 cites W1663207118 @default.
- W3037335916 cites W1762624374 @default.
- W3037335916 cites W1860107963 @default.
- W3037335916 cites W1944901286 @default.
- W3037335916 cites W1964777539 @default.
- W3037335916 cites W1976579441 @default.
- W3037335916 cites W1982202820 @default.
- W3037335916 cites W2004250079 @default.
- W3037335916 cites W2006681603 @default.
- W3037335916 cites W2011024365 @default.
- W3037335916 cites W2025177494 @default.
- W3037335916 cites W2031148504 @default.
- W3037335916 cites W2040155166 @default.
- W3037335916 cites W2043216625 @default.
- W3037335916 cites W2048971218 @default.
- W3037335916 cites W2049184973 @default.
- W3037335916 cites W2051720450 @default.
- W3037335916 cites W2059448777 @default.
- W3037335916 cites W2067191022 @default.
- W3037335916 cites W2067709708 @default.
- W3037335916 cites W2071232376 @default.
- W3037335916 cites W2083875149 @default.
- W3037335916 cites W2088816296 @default.
- W3037335916 cites W2093223772 @default.
- W3037335916 cites W2112997141 @default.
- W3037335916 cites W2118059901 @default.
- W3037335916 cites W2121623420 @default.
- W3037335916 cites W2130410830 @default.
- W3037335916 cites W2136954147 @default.
- W3037335916 cites W2138309709 @default.
- W3037335916 cites W2139379699 @default.
- W3037335916 cites W2140567893 @default.
- W3037335916 cites W2145956230 @default.
- W3037335916 cites W2147804639 @default.
- W3037335916 cites W2148534890 @default.
- W3037335916 cites W2150847344 @default.
- W3037335916 cites W2153055079 @default.
- W3037335916 cites W2153568316 @default.
- W3037335916 cites W2157421053 @default.
- W3037335916 cites W2163493657 @default.
- W3037335916 cites W2207825896 @default.
- W3037335916 cites W2217402295 @default.
- W3037335916 cites W2298034103 @default.
- W3037335916 cites W2404113511 @default.
- W3037335916 cites W2406781307 @default.
- W3037335916 cites W2479409071 @default.
- W3037335916 cites W2485667204 @default.
- W3037335916 cites W2518701025 @default.
- W3037335916 cites W2520208773 @default.
- W3037335916 cites W2530192738 @default.
- W3037335916 cites W2577537660 @default.
- W3037335916 cites W2582562484 @default.
- W3037335916 cites W2607317311 @default.
- W3037335916 cites W2757243193 @default.
- W3037335916 cites W2763236069 @default.
- W3037335916 cites W2799753612 @default.
- W3037335916 cites W2847962960 @default.
- W3037335916 cites W2888259247 @default.
- W3037335916 cites W2896555815 @default.
- W3037335916 cites W2907969244 @default.
- W3037335916 cites W2908554219 @default.
- W3037335916 cites W2954040150 @default.
- W3037335916 cites W2962703949 @default.
- W3037335916 cites W2964427798 @default.
- W3037335916 cites W2965016513 @default.
- W3037335916 cites W2980489506 @default.
- W3037335916 cites W3097978729 @default.
- W3037335916 cites W3099234116 @default.
- W3037335916 cites W3100359896 @default.
- W3037335916 cites W3100537878 @default.
- W3037335916 cites W3100810040 @default.
- W3037335916 cites W3102763196 @default.
- W3037335916 cites W3103788994 @default.
- W3037335916 cites W3105395810 @default.
- W3037335916 cites W3106186675 @default.
- W3037335916 cites W3106333376 @default.
- W3037335916 cites W4213013177 @default.
- W3037335916 cites W4249083122 @default.
- W3037335916 cites W4289874916 @default.
- W3037335916 cites W4292400014 @default.
- W3037335916 cites W621546036 @default.
- W3037335916 doi "https://doi.org/10.1093/mnras/staa1857" @default.
- W3037335916 hasPublicationYear "2020" @default.
- W3037335916 type Work @default.
- W3037335916 sameAs 3037335916 @default.
- W3037335916 citedByCount "6" @default.
- W3037335916 countsByYear W30373359162020 @default.