Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037355894> ?p ?o ?g. }
- W3037355894 abstract "The problem of finding longest common subsequence (LCS) is one of the fundamental problems in computer science, which finds application in fields such as computational biology, text processing, information retrieval, data compression etc. It is well known that (decision version of) the problem of finding the length of a LCS of an arbitrary number of input sequences (which we refer to as Multi-LCS problem) is NP-complete. Jiang and Li [SICOMP'95] showed that if Max-Clique is hard to approximate within a factor of $s$ then Multi-LCS is also hard to approximate within a factor of $Theta(s)$. By the NP-hardness of the problem of approximating Max-Clique by Zuckerman [ToC'07], for any constant $delta>0$, the length of a LCS of arbitrary number of input sequences of length $n$ each, cannot be approximated within an $n^{1-delta}$-factor in polynomial time unless {tt{P}}$=${NP}. However, the reduction of Jiang and Li assumes the alphabet size to be $Omega(n)$. So far no hardness result is known for the problem of approximating Multi-LCS over sub-linear sized alphabet. On the other hand, it is easy to get $1/|Sigma|$-factor approximation for strings of alphabet $Sigma$. In this paper, we make a significant progress towards proving hardness of approximation over small alphabet by showing a polynomial-time reduction from the well-studied emph{densest $k$-subgraph} problem with {em perfect completeness} to approximating Multi-LCS over alphabet of size $poly(n/k)$. As a consequence, from the known hardness result of densest $k$-subgraph problem (e.g. [Manurangsi, STOC'17]) we get that no polynomial-time algorithm can give an $n^{-o(1)}$-factor approximation of Multi-LCS over an alphabet of size $n^{o(1)}$, unless the Exponential Time Hypothesis is false." @default.
- W3037355894 created "2020-07-02" @default.
- W3037355894 creator A5012510300 @default.
- W3037355894 creator A5024602075 @default.
- W3037355894 creator A5068286495 @default.
- W3037355894 date "2020-06-24" @default.
- W3037355894 modified "2023-09-27" @default.
- W3037355894 title "Hardness of Approximation of (Multi-)LCS over Small Alphabet" @default.
- W3037355894 cites W1482862754 @default.
- W3037355894 cites W1518543631 @default.
- W3037355894 cites W1970026646 @default.
- W3037355894 cites W1985572324 @default.
- W3037355894 cites W1990061958 @default.
- W3037355894 cites W1995872006 @default.
- W3037355894 cites W2002883296 @default.
- W3037355894 cites W2010260400 @default.
- W3037355894 cites W2010787744 @default.
- W3037355894 cites W2012010763 @default.
- W3037355894 cites W2019404063 @default.
- W3037355894 cites W2030365814 @default.
- W3037355894 cites W2038225707 @default.
- W3037355894 cites W2040176884 @default.
- W3037355894 cites W206897732 @default.
- W3037355894 cites W2091602684 @default.
- W3037355894 cites W2109227373 @default.
- W3037355894 cites W2153952206 @default.
- W3037355894 cites W2178011018 @default.
- W3037355894 cites W2207058206 @default.
- W3037355894 cites W2552383377 @default.
- W3037355894 cites W2610183793 @default.
- W3037355894 cites W2775068415 @default.
- W3037355894 cites W2782583418 @default.
- W3037355894 cites W2902185350 @default.
- W3037355894 cites W2903274221 @default.
- W3037355894 cites W2963700977 @default.
- W3037355894 cites W3002517191 @default.
- W3037355894 hasPublicationYear "2020" @default.
- W3037355894 type Work @default.
- W3037355894 sameAs 3037355894 @default.
- W3037355894 citedByCount "0" @default.
- W3037355894 crossrefType "posted-content" @default.
- W3037355894 hasAuthorship W3037355894A5012510300 @default.
- W3037355894 hasAuthorship W3037355894A5024602075 @default.
- W3037355894 hasAuthorship W3037355894A5068286495 @default.
- W3037355894 hasConcept C111335779 @default.
- W3037355894 hasConcept C112876837 @default.
- W3037355894 hasConcept C112955886 @default.
- W3037355894 hasConcept C114614502 @default.
- W3037355894 hasConcept C118615104 @default.
- W3037355894 hasConcept C120098539 @default.
- W3037355894 hasConcept C121332964 @default.
- W3037355894 hasConcept C134306372 @default.
- W3037355894 hasConcept C137877099 @default.
- W3037355894 hasConcept C138885662 @default.
- W3037355894 hasConcept C148764684 @default.
- W3037355894 hasConcept C2524010 @default.
- W3037355894 hasConcept C2777035058 @default.
- W3037355894 hasConcept C2779557605 @default.
- W3037355894 hasConcept C311688 @default.
- W3037355894 hasConcept C33923547 @default.
- W3037355894 hasConcept C34388435 @default.
- W3037355894 hasConcept C41895202 @default.
- W3037355894 hasConcept C62520636 @default.
- W3037355894 hasConcept C90119067 @default.
- W3037355894 hasConceptScore W3037355894C111335779 @default.
- W3037355894 hasConceptScore W3037355894C112876837 @default.
- W3037355894 hasConceptScore W3037355894C112955886 @default.
- W3037355894 hasConceptScore W3037355894C114614502 @default.
- W3037355894 hasConceptScore W3037355894C118615104 @default.
- W3037355894 hasConceptScore W3037355894C120098539 @default.
- W3037355894 hasConceptScore W3037355894C121332964 @default.
- W3037355894 hasConceptScore W3037355894C134306372 @default.
- W3037355894 hasConceptScore W3037355894C137877099 @default.
- W3037355894 hasConceptScore W3037355894C138885662 @default.
- W3037355894 hasConceptScore W3037355894C148764684 @default.
- W3037355894 hasConceptScore W3037355894C2524010 @default.
- W3037355894 hasConceptScore W3037355894C2777035058 @default.
- W3037355894 hasConceptScore W3037355894C2779557605 @default.
- W3037355894 hasConceptScore W3037355894C311688 @default.
- W3037355894 hasConceptScore W3037355894C33923547 @default.
- W3037355894 hasConceptScore W3037355894C34388435 @default.
- W3037355894 hasConceptScore W3037355894C41895202 @default.
- W3037355894 hasConceptScore W3037355894C62520636 @default.
- W3037355894 hasConceptScore W3037355894C90119067 @default.
- W3037355894 hasLocation W30373558941 @default.
- W3037355894 hasOpenAccess W3037355894 @default.
- W3037355894 hasPrimaryLocation W30373558941 @default.
- W3037355894 hasRelatedWork W1008706668 @default.
- W3037355894 hasRelatedWork W1489272444 @default.
- W3037355894 hasRelatedWork W1586488998 @default.
- W3037355894 hasRelatedWork W1868947940 @default.
- W3037355894 hasRelatedWork W1990487760 @default.
- W3037355894 hasRelatedWork W1997003296 @default.
- W3037355894 hasRelatedWork W2001332692 @default.
- W3037355894 hasRelatedWork W2079758416 @default.
- W3037355894 hasRelatedWork W2168333158 @default.
- W3037355894 hasRelatedWork W2399135883 @default.
- W3037355894 hasRelatedWork W2570405604 @default.
- W3037355894 hasRelatedWork W2572273493 @default.
- W3037355894 hasRelatedWork W2749816968 @default.