Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037369528> ?p ?o ?g. }
- W3037369528 abstract "Abstract Shallow feed-forward networks are incapable of addressing complex tasks such as natural language processing that require learning of temporal signals. To address these requirements, we need deep neuromorphic architectures with recurrent connections such as deep recurrent neural networks. However, the training of such networks demand very high precision of weights, excellent conductance linearity and low write-noise- not satisfied by current memristive implementations. Inspired from optogenetics, here we report a neuromorphic computing platform comprised of photo-excitable neuristors capable of in-memory computations across 980 addressable states with a high signal-to-noise ratio of 77. The large linear dynamic range, low write noise and selective excitability allows high fidelity opto-electronic transfer of weights with a two-shot write scheme, while electrical in-memory inference provides energy efficiency. This method enables implementing a memristive deep recurrent neural network with twelve trainable layers with more than a million parameters to recognize spoken commands with >90% accuracy." @default.
- W3037369528 created "2020-07-02" @default.
- W3037369528 creator A5002380437 @default.
- W3037369528 creator A5006206692 @default.
- W3037369528 creator A5015481947 @default.
- W3037369528 creator A5017881325 @default.
- W3037369528 creator A5040579466 @default.
- W3037369528 creator A5044434060 @default.
- W3037369528 creator A5062154445 @default.
- W3037369528 creator A5064058603 @default.
- W3037369528 creator A5065771969 @default.
- W3037369528 creator A5067554156 @default.
- W3037369528 creator A5076078746 @default.
- W3037369528 creator A5081408307 @default.
- W3037369528 creator A5081567950 @default.
- W3037369528 creator A5087374737 @default.
- W3037369528 creator A5089406582 @default.
- W3037369528 date "2020-06-25" @default.
- W3037369528 modified "2023-10-16" @default.
- W3037369528 title "Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks" @default.
- W3037369528 cites W1542981317 @default.
- W3037369528 cites W1570411240 @default.
- W3037369528 cites W1937359183 @default.
- W3037369528 cites W1969314684 @default.
- W3037369528 cites W1979254829 @default.
- W3037369528 cites W1987494581 @default.
- W3037369528 cites W2034129279 @default.
- W3037369528 cites W2064675550 @default.
- W3037369528 cites W2112796928 @default.
- W3037369528 cites W2115129967 @default.
- W3037369528 cites W2118249063 @default.
- W3037369528 cites W2138913040 @default.
- W3037369528 cites W2142150505 @default.
- W3037369528 cites W2145287260 @default.
- W3037369528 cites W2167095271 @default.
- W3037369528 cites W2222525807 @default.
- W3037369528 cites W2300242332 @default.
- W3037369528 cites W2508071702 @default.
- W3037369528 cites W2552299751 @default.
- W3037369528 cites W2591029953 @default.
- W3037369528 cites W2758404936 @default.
- W3037369528 cites W2763048613 @default.
- W3037369528 cites W2777639606 @default.
- W3037369528 cites W2792774280 @default.
- W3037369528 cites W2797506253 @default.
- W3037369528 cites W2801949724 @default.
- W3037369528 cites W2888324204 @default.
- W3037369528 cites W2895935142 @default.
- W3037369528 cites W2896953036 @default.
- W3037369528 cites W2898246601 @default.
- W3037369528 cites W2904302621 @default.
- W3037369528 cites W2907909057 @default.
- W3037369528 cites W2919115771 @default.
- W3037369528 cites W2936774411 @default.
- W3037369528 cites W2942216650 @default.
- W3037369528 cites W2944119451 @default.
- W3037369528 cites W2944331166 @default.
- W3037369528 cites W2957921024 @default.
- W3037369528 cites W2960778947 @default.
- W3037369528 cites W2963059095 @default.
- W3037369528 cites W2964791903 @default.
- W3037369528 cites W2977226092 @default.
- W3037369528 cites W2997195398 @default.
- W3037369528 cites W3000505821 @default.
- W3037369528 cites W3002481028 @default.
- W3037369528 cites W3003821665 @default.
- W3037369528 cites W4210574564 @default.
- W3037369528 doi "https://doi.org/10.1038/s41467-020-16985-0" @default.
- W3037369528 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7316775" @default.
- W3037369528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32587241" @default.
- W3037369528 hasPublicationYear "2020" @default.
- W3037369528 type Work @default.
- W3037369528 sameAs 3037369528 @default.
- W3037369528 citedByCount "30" @default.
- W3037369528 countsByYear W30373695282020 @default.
- W3037369528 countsByYear W30373695282021 @default.
- W3037369528 countsByYear W30373695282022 @default.
- W3037369528 countsByYear W30373695282023 @default.
- W3037369528 crossrefType "journal-article" @default.
- W3037369528 hasAuthorship W3037369528A5002380437 @default.
- W3037369528 hasAuthorship W3037369528A5006206692 @default.
- W3037369528 hasAuthorship W3037369528A5015481947 @default.
- W3037369528 hasAuthorship W3037369528A5017881325 @default.
- W3037369528 hasAuthorship W3037369528A5040579466 @default.
- W3037369528 hasAuthorship W3037369528A5044434060 @default.
- W3037369528 hasAuthorship W3037369528A5062154445 @default.
- W3037369528 hasAuthorship W3037369528A5064058603 @default.
- W3037369528 hasAuthorship W3037369528A5065771969 @default.
- W3037369528 hasAuthorship W3037369528A5067554156 @default.
- W3037369528 hasAuthorship W3037369528A5076078746 @default.
- W3037369528 hasAuthorship W3037369528A5081408307 @default.
- W3037369528 hasAuthorship W3037369528A5081567950 @default.
- W3037369528 hasAuthorship W3037369528A5087374737 @default.
- W3037369528 hasAuthorship W3037369528A5089406582 @default.
- W3037369528 hasBestOaLocation W30373695281 @default.
- W3037369528 hasConcept C108583219 @default.
- W3037369528 hasConcept C113364801 @default.
- W3037369528 hasConcept C115961682 @default.
- W3037369528 hasConcept C118524514 @default.
- W3037369528 hasConcept C119599485 @default.