Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037369538> ?p ?o ?g. }
- W3037369538 endingPage "676" @default.
- W3037369538 startingPage "676" @default.
- W3037369538 abstract "Tropical cyclones have always been a concern of meteorologists, and there are many studies regarding the axisymmetric structures, dynamic mechanisms, and forecasting techniques from the past 100 years. This research demonstrates the ongoing progress as well as the many remaining problems. Machine learning, as a means of artificial intelligence, has been certified by many researchers as being able to provide a new way to solve the bottlenecks of tropical cyclone forecasts, whether using a pure data-driven model or improving numerical models by incorporating machine learning. Through summarizing and analyzing the challenges of tropical cyclone forecasts in recent years and successful cases of machine learning methods in these aspects, this review introduces progress based on machine learning in genesis forecasts, track forecasts, intensity forecasts, extreme weather forecasts associated with tropical cyclones (such as strong winds and rainstorms, and their disastrous impacts), and storm surge forecasts, as well as in improving numerical forecast models. All of these can be regarded as both an opportunity and a challenge. The opportunity is that at present, the potential of machine learning has not been completely exploited, and a large amount of multi-source data have also not been fully utilized to improve the accuracy of tropical cyclone forecasting. The challenge is that the predictable period and stability of tropical cyclone prediction can be difficult to guarantee, because tropical cyclones are different from normal weather phenomena and oceanographic processes and they have complex dynamic mechanisms and are easily influenced by many factors." @default.
- W3037369538 created "2020-07-02" @default.
- W3037369538 creator A5001799007 @default.
- W3037369538 creator A5014963018 @default.
- W3037369538 creator A5044936528 @default.
- W3037369538 date "2020-06-27" @default.
- W3037369538 modified "2023-10-16" @default.
- W3037369538 title "Machine Learning in Tropical Cyclone Forecast Modeling: A Review" @default.
- W3037369538 cites W1501116218 @default.
- W3037369538 cites W1583150582 @default.
- W3037369538 cites W1596717185 @default.
- W3037369538 cites W192024114 @default.
- W3037369538 cites W1933925569 @default.
- W3037369538 cites W1967581660 @default.
- W3037369538 cites W1969366914 @default.
- W3037369538 cites W1970969089 @default.
- W3037369538 cites W1977452436 @default.
- W3037369538 cites W1985048212 @default.
- W3037369538 cites W1985307389 @default.
- W3037369538 cites W1988764623 @default.
- W3037369538 cites W1988908739 @default.
- W3037369538 cites W1988930395 @default.
- W3037369538 cites W1990743832 @default.
- W3037369538 cites W1991339015 @default.
- W3037369538 cites W1993143068 @default.
- W3037369538 cites W1998726919 @default.
- W3037369538 cites W1998871699 @default.
- W3037369538 cites W2003788277 @default.
- W3037369538 cites W2004220829 @default.
- W3037369538 cites W2007612631 @default.
- W3037369538 cites W2008757278 @default.
- W3037369538 cites W2011804658 @default.
- W3037369538 cites W2013462453 @default.
- W3037369538 cites W2021218567 @default.
- W3037369538 cites W2027197837 @default.
- W3037369538 cites W2031787618 @default.
- W3037369538 cites W2034630107 @default.
- W3037369538 cites W2035382429 @default.
- W3037369538 cites W2035478691 @default.
- W3037369538 cites W2038866329 @default.
- W3037369538 cites W2055141829 @default.
- W3037369538 cites W2063120355 @default.
- W3037369538 cites W2064397794 @default.
- W3037369538 cites W2067562186 @default.
- W3037369538 cites W2069782902 @default.
- W3037369538 cites W2076977109 @default.
- W3037369538 cites W2096538718 @default.
- W3037369538 cites W2096950989 @default.
- W3037369538 cites W2099346501 @default.
- W3037369538 cites W2103868202 @default.
- W3037369538 cites W2113458380 @default.
- W3037369538 cites W2114331883 @default.
- W3037369538 cites W2117743955 @default.
- W3037369538 cites W2121209170 @default.
- W3037369538 cites W2122823404 @default.
- W3037369538 cites W2123616509 @default.
- W3037369538 cites W2124131771 @default.
- W3037369538 cites W2124397295 @default.
- W3037369538 cites W2125283600 @default.
- W3037369538 cites W2125871170 @default.
- W3037369538 cites W2127788474 @default.
- W3037369538 cites W2131862161 @default.
- W3037369538 cites W2132677276 @default.
- W3037369538 cites W2142534172 @default.
- W3037369538 cites W2144354855 @default.
- W3037369538 cites W2160951749 @default.
- W3037369538 cites W2164738320 @default.
- W3037369538 cites W2167905626 @default.
- W3037369538 cites W2170874467 @default.
- W3037369538 cites W2180096630 @default.
- W3037369538 cites W2214723031 @default.
- W3037369538 cites W2217723370 @default.
- W3037369538 cites W2226871692 @default.
- W3037369538 cites W2255717465 @default.
- W3037369538 cites W2264211756 @default.
- W3037369538 cites W2342214142 @default.
- W3037369538 cites W2417545235 @default.
- W3037369538 cites W2466389796 @default.
- W3037369538 cites W2468077803 @default.
- W3037369538 cites W2498979687 @default.
- W3037369538 cites W2516202537 @default.
- W3037369538 cites W2565952286 @default.
- W3037369538 cites W2616290533 @default.
- W3037369538 cites W2736835436 @default.
- W3037369538 cites W2763177639 @default.
- W3037369538 cites W2763624449 @default.
- W3037369538 cites W2766018291 @default.
- W3037369538 cites W2770818215 @default.
- W3037369538 cites W2776217373 @default.
- W3037369538 cites W2782522152 @default.
- W3037369538 cites W2791764259 @default.
- W3037369538 cites W2792413338 @default.
- W3037369538 cites W2804943168 @default.
- W3037369538 cites W2809292300 @default.
- W3037369538 cites W2889096034 @default.
- W3037369538 cites W2889706606 @default.
- W3037369538 cites W2890034837 @default.
- W3037369538 cites W2895402411 @default.