Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037410052> ?p ?o ?g. }
- W3037410052 endingPage "4240" @default.
- W3037410052 startingPage "4233" @default.
- W3037410052 abstract "Purpose To develop a deep learning‐based model for prostate planning target volume (PTV) localization on cone beam computed tomography (CBCT) to improve the workflow of CBCT‐guided patient setup. Methods A two‐step task‐based residual network (T 2 RN) is proposed to automatically identify inherent landmarks in prostate PTV. The input to the T 2 RN is the pretreatment CBCT images of the patient, and the output is the deep learning‐identified landmarks in the PTV. To ensure robust PTV localization, the T 2 RN model is trained by using over thousand sets of CT images with labeled landmarks, each of the CTs corresponds to a different scenario of patient position and/or anatomy distribution generated by synthetically changing the planning CT (pCT) image. The changes, including translation, rotation, and deformation, represent vast possible clinical situations of anatomy variations during a course of radiation therapy (RT). The trained patient‐specific T 2 RN model is tested by using 240 CBCTs from six patients. The testing CBCTs consists of 120 original CBCTs and 120 synthetic CBCTs. The synthetic CBCTs are generated by applying rotation/translation transformations to each of the original CBCT. Results The systematic/random setup errors between the model prediction and the reference are found to be <0.25/2.46 mm and 0.14/1.41° in translation and rotation dimensions, respectively. Pearson’s correlation coefficient between model prediction and the reference is higher than 0.94 in translation and rotation dimensions. The Bland–Altman plots show good agreement between the two techniques. Conclusions A novel T 2 RN deep learning technique is established to localize the prostate PTV for RT patient setup. Our results show that highly accurate marker‐less prostate setup is achievable by leveraging the state‐of‐the‐art deep learning strategy." @default.
- W3037410052 created "2020-07-02" @default.
- W3037410052 creator A5023976830 @default.
- W3037410052 creator A5025751238 @default.
- W3037410052 creator A5049688948 @default.
- W3037410052 creator A5056242195 @default.
- W3037410052 creator A5061423926 @default.
- W3037410052 creator A5061512571 @default.
- W3037410052 creator A5063127492 @default.
- W3037410052 creator A5072003003 @default.
- W3037410052 creator A5086187557 @default.
- W3037410052 date "2020-07-27" @default.
- W3037410052 modified "2023-10-13" @default.
- W3037410052 title "A deep learning framework for prostate localization in cone beam CT‐guided radiotherapy" @default.
- W3037410052 cites W1964370303 @default.
- W3037410052 cites W1965143167 @default.
- W3037410052 cites W1974477570 @default.
- W3037410052 cites W1983275710 @default.
- W3037410052 cites W1984742825 @default.
- W3037410052 cites W1986812278 @default.
- W3037410052 cites W1987240643 @default.
- W3037410052 cites W1995235924 @default.
- W3037410052 cites W2006051567 @default.
- W3037410052 cites W2011465695 @default.
- W3037410052 cites W2016259119 @default.
- W3037410052 cites W2016290415 @default.
- W3037410052 cites W2018885845 @default.
- W3037410052 cites W2027351279 @default.
- W3037410052 cites W2031993439 @default.
- W3037410052 cites W2035069795 @default.
- W3037410052 cites W2038551782 @default.
- W3037410052 cites W2040792333 @default.
- W3037410052 cites W2047239174 @default.
- W3037410052 cites W2055761056 @default.
- W3037410052 cites W2061244628 @default.
- W3037410052 cites W2086255649 @default.
- W3037410052 cites W2091242904 @default.
- W3037410052 cites W2098815853 @default.
- W3037410052 cites W2103692418 @default.
- W3037410052 cites W2107473233 @default.
- W3037410052 cites W2110709814 @default.
- W3037410052 cites W2117559428 @default.
- W3037410052 cites W2122062060 @default.
- W3037410052 cites W2126219471 @default.
- W3037410052 cites W2130885411 @default.
- W3037410052 cites W2134885754 @default.
- W3037410052 cites W2147427603 @default.
- W3037410052 cites W2150373135 @default.
- W3037410052 cites W2284939916 @default.
- W3037410052 cites W2313339984 @default.
- W3037410052 cites W2509916606 @default.
- W3037410052 cites W2515299681 @default.
- W3037410052 cites W2588097777 @default.
- W3037410052 cites W2592474955 @default.
- W3037410052 cites W2621660136 @default.
- W3037410052 cites W2724710774 @default.
- W3037410052 cites W2765194803 @default.
- W3037410052 cites W2803361262 @default.
- W3037410052 cites W2944050657 @default.
- W3037410052 cites W2972335309 @default.
- W3037410052 cites W621251951 @default.
- W3037410052 doi "https://doi.org/10.1002/mp.14355" @default.
- W3037410052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32583418" @default.
- W3037410052 hasPublicationYear "2020" @default.
- W3037410052 type Work @default.
- W3037410052 sameAs 3037410052 @default.
- W3037410052 citedByCount "20" @default.
- W3037410052 countsByYear W30374100522020 @default.
- W3037410052 countsByYear W30374100522021 @default.
- W3037410052 countsByYear W30374100522022 @default.
- W3037410052 countsByYear W30374100522023 @default.
- W3037410052 crossrefType "journal-article" @default.
- W3037410052 hasAuthorship W3037410052A5023976830 @default.
- W3037410052 hasAuthorship W3037410052A5025751238 @default.
- W3037410052 hasAuthorship W3037410052A5049688948 @default.
- W3037410052 hasAuthorship W3037410052A5056242195 @default.
- W3037410052 hasAuthorship W3037410052A5061423926 @default.
- W3037410052 hasAuthorship W3037410052A5061512571 @default.
- W3037410052 hasAuthorship W3037410052A5063127492 @default.
- W3037410052 hasAuthorship W3037410052A5072003003 @default.
- W3037410052 hasAuthorship W3037410052A5086187557 @default.
- W3037410052 hasConcept C104317684 @default.
- W3037410052 hasConcept C105580179 @default.
- W3037410052 hasConcept C115961682 @default.
- W3037410052 hasConcept C126838900 @default.
- W3037410052 hasConcept C149364088 @default.
- W3037410052 hasConcept C154945302 @default.
- W3037410052 hasConcept C166704113 @default.
- W3037410052 hasConcept C185592680 @default.
- W3037410052 hasConcept C2779813781 @default.
- W3037410052 hasConcept C2989005 @default.
- W3037410052 hasConcept C3018399558 @default.
- W3037410052 hasConcept C31601959 @default.
- W3037410052 hasConcept C31972630 @default.
- W3037410052 hasConcept C41008148 @default.
- W3037410052 hasConcept C509974204 @default.
- W3037410052 hasConcept C544519230 @default.
- W3037410052 hasConcept C55493867 @default.