Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037455438> ?p ?o ?g. }
- W3037455438 endingPage "222" @default.
- W3037455438 startingPage "167" @default.
- W3037455438 abstract "Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems." @default.
- W3037455438 created "2020-07-02" @default.
- W3037455438 creator A5048908665 @default.
- W3037455438 date "2013-04-01" @default.
- W3037455438 modified "2023-10-16" @default.
- W3037455438 title "Self-oscillation" @default.
- W3037455438 cites W1504952855 @default.
- W3037455438 cites W1532700010 @default.
- W3037455438 cites W1582828056 @default.
- W3037455438 cites W1766546786 @default.
- W3037455438 cites W1963719910 @default.
- W3037455438 cites W1964609460 @default.
- W3037455438 cites W1966397236 @default.
- W3037455438 cites W1970926346 @default.
- W3037455438 cites W1977239989 @default.
- W3037455438 cites W1977954641 @default.
- W3037455438 cites W1978494722 @default.
- W3037455438 cites W1979176387 @default.
- W3037455438 cites W1979704006 @default.
- W3037455438 cites W1981899048 @default.
- W3037455438 cites W1984314872 @default.
- W3037455438 cites W1984823549 @default.
- W3037455438 cites W1984862835 @default.
- W3037455438 cites W1985519612 @default.
- W3037455438 cites W1985940938 @default.
- W3037455438 cites W2000406457 @default.
- W3037455438 cites W2009375605 @default.
- W3037455438 cites W2009396755 @default.
- W3037455438 cites W2012131403 @default.
- W3037455438 cites W2012495237 @default.
- W3037455438 cites W2024731560 @default.
- W3037455438 cites W2025722036 @default.
- W3037455438 cites W2027347130 @default.
- W3037455438 cites W2030335006 @default.
- W3037455438 cites W2035976064 @default.
- W3037455438 cites W2046115356 @default.
- W3037455438 cites W2047420098 @default.
- W3037455438 cites W2051557357 @default.
- W3037455438 cites W2052800549 @default.
- W3037455438 cites W2054803905 @default.
- W3037455438 cites W2055722378 @default.
- W3037455438 cites W2057431623 @default.
- W3037455438 cites W2063668051 @default.
- W3037455438 cites W2066469075 @default.
- W3037455438 cites W2070842193 @default.
- W3037455438 cites W2071313546 @default.
- W3037455438 cites W2073960835 @default.
- W3037455438 cites W2077515800 @default.
- W3037455438 cites W2079820365 @default.
- W3037455438 cites W2081219588 @default.
- W3037455438 cites W2090158709 @default.
- W3037455438 cites W2099777686 @default.
- W3037455438 cites W2108196417 @default.
- W3037455438 cites W2113694792 @default.
- W3037455438 cites W2116433591 @default.
- W3037455438 cites W2127925812 @default.
- W3037455438 cites W2130553518 @default.
- W3037455438 cites W2132258831 @default.
- W3037455438 cites W2135491838 @default.
- W3037455438 cites W2141394518 @default.
- W3037455438 cites W2144417996 @default.
- W3037455438 cites W2145181166 @default.
- W3037455438 cites W2148033010 @default.
- W3037455438 cites W2154953441 @default.
- W3037455438 cites W2155969015 @default.
- W3037455438 cites W2163993808 @default.
- W3037455438 cites W2164144641 @default.
- W3037455438 cites W2172820179 @default.
- W3037455438 cites W2173794755 @default.
- W3037455438 cites W2280835476 @default.
- W3037455438 cites W2315696198 @default.
- W3037455438 cites W2316326196 @default.
- W3037455438 cites W2319522878 @default.
- W3037455438 cites W2323998147 @default.
- W3037455438 cites W2328036675 @default.
- W3037455438 cites W2331308056 @default.
- W3037455438 cites W2333361676 @default.
- W3037455438 cites W2495467174 @default.
- W3037455438 cites W2566706182 @default.
- W3037455438 cites W2575434776 @default.
- W3037455438 cites W2768464843 @default.
- W3037455438 cites W3102229116 @default.
- W3037455438 cites W3141032947 @default.
- W3037455438 cites W4239572543 @default.
- W3037455438 cites W4242582841 @default.
- W3037455438 cites W4246414079 @default.
- W3037455438 cites W4248866141 @default.
- W3037455438 cites W4249692389 @default.
- W3037455438 cites W4252911570 @default.
- W3037455438 cites W4254613374 @default.
- W3037455438 cites W4255092934 @default.
- W3037455438 cites W4255499265 @default.
- W3037455438 cites W4256320681 @default.
- W3037455438 cites W4362120040 @default.
- W3037455438 cites W611397421 @default.
- W3037455438 doi "https://doi.org/10.1016/j.physrep.2012.10.007" @default.
- W3037455438 hasPublicationYear "2013" @default.
- W3037455438 type Work @default.