Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037481569> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3037481569 abstract "A wide variety of evolving (neuro-)fuzzy systems (E(N)FS) approaches have been proposed during the last 10 to 15 years in order to handle (fast and real-time) data stream mining and modeling processes by dynamically updating the rule structure and antecedents. The current denominator in the update of the consequent parameters is the usage of the recursive (fuzzily weighted) least squares estimator (R(FW)LS), as being applied in almost all E(N)FS approaches. In this paper, we propose and examine alternative variants for consequent parameter updates, namely multi-innovation RFWLS, recursive corr-entropy and especially recursive weighted total least squares. Multi-innovation RLS guarantees more stability in the update, whenever structural changes (i.e. changes in the antecedents) in the E(N)FS are performed, as the rule membership degrees on (a portion of) past samples are actualized before and properly integrated in each update step. Recursive corr-entropy addresses the problematic of outliers by down-weighing the influence of (atypically) higher errors in the parameter updates. Recursive weighted total least squares takes into account also a possible noise level in the input variables (and not solely in the target variable as in RFWLS). The approaches are compared with standard RFWLS i.) on three data stream regression problems from practical applications, affected by (more or less significant) noise levels and one embedding a known drift, and ii.) on a realworld time-series based forecasting problem, also affected by noise. The results based on accumulated prediction error trends over time indicate that RFWLS can be largely outperformed by the proposed alternative variants." @default.
- W3037481569 created "2020-07-02" @default.
- W3037481569 creator A5010578654 @default.
- W3037481569 date "2020-05-01" @default.
- W3037481569 modified "2023-09-27" @default.
- W3037481569 title "Variants of Recursive Consequent Parameters Learning in Evolving Neuro-Fuzzy Systems" @default.
- W3037481569 cites W1537430301 @default.
- W3037481569 cites W1966654857 @default.
- W3037481569 cites W2015881065 @default.
- W3037481569 cites W2018359669 @default.
- W3037481569 cites W2022443690 @default.
- W3037481569 cites W2047090954 @default.
- W3037481569 cites W2052345845 @default.
- W3037481569 cites W2057974719 @default.
- W3037481569 cites W2116396438 @default.
- W3037481569 cites W2132093718 @default.
- W3037481569 cites W2132277248 @default.
- W3037481569 cites W2138668867 @default.
- W3037481569 cites W2151863350 @default.
- W3037481569 cites W2152161790 @default.
- W3037481569 cites W2153196467 @default.
- W3037481569 cites W2500228126 @default.
- W3037481569 cites W2698658463 @default.
- W3037481569 cites W2756444473 @default.
- W3037481569 cites W2885419454 @default.
- W3037481569 cites W2909751940 @default.
- W3037481569 cites W2917310212 @default.
- W3037481569 cites W2929291387 @default.
- W3037481569 cites W2963134661 @default.
- W3037481569 cites W2965049034 @default.
- W3037481569 cites W322952782 @default.
- W3037481569 cites W4234672050 @default.
- W3037481569 cites W4244017338 @default.
- W3037481569 cites W4247067480 @default.
- W3037481569 cites W4250364582 @default.
- W3037481569 cites W4250859275 @default.
- W3037481569 doi "https://doi.org/10.1109/eais48028.2020.9122696" @default.
- W3037481569 hasPublicationYear "2020" @default.
- W3037481569 type Work @default.
- W3037481569 sameAs 3037481569 @default.
- W3037481569 citedByCount "2" @default.
- W3037481569 countsByYear W30374815692021 @default.
- W3037481569 countsByYear W30374815692022 @default.
- W3037481569 crossrefType "proceedings-article" @default.
- W3037481569 hasAuthorship W3037481569A5010578654 @default.
- W3037481569 hasConcept C102248274 @default.
- W3037481569 hasConcept C105795698 @default.
- W3037481569 hasConcept C106301342 @default.
- W3037481569 hasConcept C11413529 @default.
- W3037481569 hasConcept C115961682 @default.
- W3037481569 hasConcept C119857082 @default.
- W3037481569 hasConcept C121332964 @default.
- W3037481569 hasConcept C124101348 @default.
- W3037481569 hasConcept C145249878 @default.
- W3037481569 hasConcept C151406439 @default.
- W3037481569 hasConcept C154945302 @default.
- W3037481569 hasConcept C185429906 @default.
- W3037481569 hasConcept C33923547 @default.
- W3037481569 hasConcept C41008148 @default.
- W3037481569 hasConcept C62520636 @default.
- W3037481569 hasConcept C79337645 @default.
- W3037481569 hasConcept C99498987 @default.
- W3037481569 hasConceptScore W3037481569C102248274 @default.
- W3037481569 hasConceptScore W3037481569C105795698 @default.
- W3037481569 hasConceptScore W3037481569C106301342 @default.
- W3037481569 hasConceptScore W3037481569C11413529 @default.
- W3037481569 hasConceptScore W3037481569C115961682 @default.
- W3037481569 hasConceptScore W3037481569C119857082 @default.
- W3037481569 hasConceptScore W3037481569C121332964 @default.
- W3037481569 hasConceptScore W3037481569C124101348 @default.
- W3037481569 hasConceptScore W3037481569C145249878 @default.
- W3037481569 hasConceptScore W3037481569C151406439 @default.
- W3037481569 hasConceptScore W3037481569C154945302 @default.
- W3037481569 hasConceptScore W3037481569C185429906 @default.
- W3037481569 hasConceptScore W3037481569C33923547 @default.
- W3037481569 hasConceptScore W3037481569C41008148 @default.
- W3037481569 hasConceptScore W3037481569C62520636 @default.
- W3037481569 hasConceptScore W3037481569C79337645 @default.
- W3037481569 hasConceptScore W3037481569C99498987 @default.
- W3037481569 hasLocation W30374815691 @default.
- W3037481569 hasOpenAccess W3037481569 @default.
- W3037481569 hasPrimaryLocation W30374815691 @default.
- W3037481569 hasRelatedWork W1542957548 @default.
- W3037481569 hasRelatedWork W2139259411 @default.
- W3037481569 hasRelatedWork W2142168194 @default.
- W3037481569 hasRelatedWork W2157442713 @default.
- W3037481569 hasRelatedWork W2216963642 @default.
- W3037481569 hasRelatedWork W2997585057 @default.
- W3037481569 hasRelatedWork W3019301961 @default.
- W3037481569 hasRelatedWork W3186653746 @default.
- W3037481569 hasRelatedWork W3207789682 @default.
- W3037481569 hasRelatedWork W4285124024 @default.
- W3037481569 isParatext "false" @default.
- W3037481569 isRetracted "false" @default.
- W3037481569 magId "3037481569" @default.
- W3037481569 workType "article" @default.