Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037482496> ?p ?o ?g. }
- W3037482496 abstract "Non-linear manifold learning enables high-dimensional data analysis, but requires out-of-sample-extension methods to process new data points. In this paper, we propose a manifold learning algorithm based on deep learning to create an encoder, which maps a high-dimensional dataset and its low-dimensional embedding, and a decoder, which takes the embedded data back to the high-dimensional space. Stacking the encoder and decoder together constructs an autoencoder, which we term a diffusion net, that performs out-of-sample-extension as well as outlier detection. We introduce new neural net constraints for the encoder, which preserves the local geometry of the points, and we prove rates of convergence for the encoder. Also, our approach is efficient in both computational complexity and memory requirements, as opposed to previous methods that require storage of all training points in both the high-dimensional and the low-dimensional spaces to calculate the out-of-sample-extension and the pre-image." @default.
- W3037482496 created "2020-07-02" @default.
- W3037482496 creator A5049178654 @default.
- W3037482496 creator A5075832074 @default.
- W3037482496 creator A5080194185 @default.
- W3037482496 creator A5088774511 @default.
- W3037482496 date "2015-06-25" @default.
- W3037482496 modified "2023-09-27" @default.
- W3037482496 title "Diffusion Nets" @default.
- W3037482496 cites W1514205146 @default.
- W3037482496 cites W1771922203 @default.
- W3037482496 cites W1963586106 @default.
- W3037482496 cites W1963766113 @default.
- W3037482496 cites W1972265435 @default.
- W3037482496 cites W1988147465 @default.
- W3037482496 cites W1994456831 @default.
- W3037482496 cites W1999322688 @default.
- W3037482496 cites W2001141328 @default.
- W3037482496 cites W2011975968 @default.
- W3037482496 cites W2014569347 @default.
- W3037482496 cites W2025768430 @default.
- W3037482496 cites W2044002329 @default.
- W3037482496 cites W2053186076 @default.
- W3037482496 cites W2053603770 @default.
- W3037482496 cites W2055671711 @default.
- W3037482496 cites W2072128103 @default.
- W3037482496 cites W2090857812 @default.
- W3037482496 cites W2097308346 @default.
- W3037482496 cites W2100495367 @default.
- W3037482496 cites W2102017903 @default.
- W3037482496 cites W2103125780 @default.
- W3037482496 cites W2108759471 @default.
- W3037482496 cites W2116810533 @default.
- W3037482496 cites W2128890115 @default.
- W3037482496 cites W2133396101 @default.
- W3037482496 cites W2136922672 @default.
- W3037482496 cites W2140095548 @default.
- W3037482496 cites W2142885304 @default.
- W3037482496 cites W2152322845 @default.
- W3037482496 cites W2153934661 @default.
- W3037482496 cites W2156838815 @default.
- W3037482496 cites W2160167256 @default.
- W3037482496 cites W2163922914 @default.
- W3037482496 cites W2165558283 @default.
- W3037482496 cites W2166116275 @default.
- W3037482496 cites W2218318129 @default.
- W3037482496 cites W2227768973 @default.
- W3037482496 cites W2275445006 @default.
- W3037482496 cites W2398437934 @default.
- W3037482496 cites W3103521248 @default.
- W3037482496 hasPublicationYear "2015" @default.
- W3037482496 type Work @default.
- W3037482496 sameAs 3037482496 @default.
- W3037482496 citedByCount "0" @default.
- W3037482496 crossrefType "posted-content" @default.
- W3037482496 hasAuthorship W3037482496A5049178654 @default.
- W3037482496 hasAuthorship W3037482496A5075832074 @default.
- W3037482496 hasAuthorship W3037482496A5080194185 @default.
- W3037482496 hasAuthorship W3037482496A5088774511 @default.
- W3037482496 hasConcept C101738243 @default.
- W3037482496 hasConcept C108583219 @default.
- W3037482496 hasConcept C111919701 @default.
- W3037482496 hasConcept C11413529 @default.
- W3037482496 hasConcept C118505674 @default.
- W3037482496 hasConcept C121332964 @default.
- W3037482496 hasConcept C125411270 @default.
- W3037482496 hasConcept C127413603 @default.
- W3037482496 hasConcept C151876577 @default.
- W3037482496 hasConcept C154945302 @default.
- W3037482496 hasConcept C184509293 @default.
- W3037482496 hasConcept C185592680 @default.
- W3037482496 hasConcept C198531522 @default.
- W3037482496 hasConcept C199360897 @default.
- W3037482496 hasConcept C21080849 @default.
- W3037482496 hasConcept C2778029271 @default.
- W3037482496 hasConcept C33347731 @default.
- W3037482496 hasConcept C41008148 @default.
- W3037482496 hasConcept C41608201 @default.
- W3037482496 hasConcept C43617362 @default.
- W3037482496 hasConcept C46141821 @default.
- W3037482496 hasConcept C529865628 @default.
- W3037482496 hasConcept C55128770 @default.
- W3037482496 hasConcept C57273362 @default.
- W3037482496 hasConcept C70518039 @default.
- W3037482496 hasConcept C73555534 @default.
- W3037482496 hasConcept C78519656 @default.
- W3037482496 hasConcept C79337645 @default.
- W3037482496 hasConcept C98045186 @default.
- W3037482496 hasConceptScore W3037482496C101738243 @default.
- W3037482496 hasConceptScore W3037482496C108583219 @default.
- W3037482496 hasConceptScore W3037482496C111919701 @default.
- W3037482496 hasConceptScore W3037482496C11413529 @default.
- W3037482496 hasConceptScore W3037482496C118505674 @default.
- W3037482496 hasConceptScore W3037482496C121332964 @default.
- W3037482496 hasConceptScore W3037482496C125411270 @default.
- W3037482496 hasConceptScore W3037482496C127413603 @default.
- W3037482496 hasConceptScore W3037482496C151876577 @default.
- W3037482496 hasConceptScore W3037482496C154945302 @default.
- W3037482496 hasConceptScore W3037482496C184509293 @default.
- W3037482496 hasConceptScore W3037482496C185592680 @default.