Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037492164> ?p ?o ?g. }
- W3037492164 endingPage "2005" @default.
- W3037492164 startingPage "2005" @default.
- W3037492164 abstract "Land cover type classification still remains an active research topic while new sensors and methods become available. Applications such as environmental monitoring, natural resource management, and change detection require more accurate, detailed, and constantly updated land-cover type mapping. These needs are fulfilled by newer sensors with high spatial and spectral resolution along with modern data processing algorithms. Sentinel-2 sensor provides data with high spatial, spectral, and temporal resolution for the in classification of highly fragmented landscape. This study applies six traditional data classifiers and nine ensemble methods on multitemporal Sentinel-2 image datasets for identifying land cover types in the heterogeneous Mediterranean landscape of Lesvos Island, Greece. Support vector machine, random forest, artificial neural network, decision tree, linear discriminant analysis, and k-nearest neighbor classifiers are applied and compared with nine ensemble classifiers on the basis of different voting methods. kappa statistic, F1-score, and Matthews correlation coefficient metrics were used in the assembly of the voting methods. Support vector machine outperformed the base classifiers with kappa of 0.91. Support vector machine also outperformed the ensemble classifiers in an unseen dataset. Five voting methods performed better than the rest of the classifiers. A diversity study based on four different metrics revealed that an ensemble can be avoided if a base classifier shows an identifiable superiority. Therefore, ensemble approaches should include a careful selection of base-classifiers based on a diversity analysis." @default.
- W3037492164 created "2020-07-02" @default.
- W3037492164 creator A5016857173 @default.
- W3037492164 creator A5017250124 @default.
- W3037492164 creator A5067248842 @default.
- W3037492164 date "2020-06-22" @default.
- W3037492164 modified "2023-09-26" @default.
- W3037492164 title "Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem" @default.
- W3037492164 cites W1605688901 @default.
- W3037492164 cites W1831050183 @default.
- W3037492164 cites W1976454692 @default.
- W3037492164 cites W1978034823 @default.
- W3037492164 cites W1981399499 @default.
- W3037492164 cites W1990653740 @default.
- W3037492164 cites W1992024126 @default.
- W3037492164 cites W1992408997 @default.
- W3037492164 cites W1999410614 @default.
- W3037492164 cites W2014740640 @default.
- W3037492164 cites W2018732570 @default.
- W3037492164 cites W2034816582 @default.
- W3037492164 cites W2035549557 @default.
- W3037492164 cites W2036389990 @default.
- W3037492164 cites W2036632898 @default.
- W3037492164 cites W2039886821 @default.
- W3037492164 cites W2051812123 @default.
- W3037492164 cites W2063037906 @default.
- W3037492164 cites W2065800647 @default.
- W3037492164 cites W2076627662 @default.
- W3037492164 cites W2076656703 @default.
- W3037492164 cites W2078619499 @default.
- W3037492164 cites W2079454091 @default.
- W3037492164 cites W2084362125 @default.
- W3037492164 cites W2084502283 @default.
- W3037492164 cites W2084668217 @default.
- W3037492164 cites W2086148793 @default.
- W3037492164 cites W2086224283 @default.
- W3037492164 cites W2087070363 @default.
- W3037492164 cites W2088941391 @default.
- W3037492164 cites W2092002643 @default.
- W3037492164 cites W2098653311 @default.
- W3037492164 cites W2103699041 @default.
- W3037492164 cites W2109191549 @default.
- W3037492164 cites W2115629999 @default.
- W3037492164 cites W2123314391 @default.
- W3037492164 cites W2124706543 @default.
- W3037492164 cites W2125724410 @default.
- W3037492164 cites W2130269771 @default.
- W3037492164 cites W2146126838 @default.
- W3037492164 cites W2149445133 @default.
- W3037492164 cites W2155433618 @default.
- W3037492164 cites W2155632266 @default.
- W3037492164 cites W2158770403 @default.
- W3037492164 cites W2162698522 @default.
- W3037492164 cites W2163241395 @default.
- W3037492164 cites W2168809519 @default.
- W3037492164 cites W2172009270 @default.
- W3037492164 cites W2261059368 @default.
- W3037492164 cites W2307094448 @default.
- W3037492164 cites W2314785379 @default.
- W3037492164 cites W2317339837 @default.
- W3037492164 cites W2341130385 @default.
- W3037492164 cites W2405365025 @default.
- W3037492164 cites W2438868494 @default.
- W3037492164 cites W2516589589 @default.
- W3037492164 cites W2598998899 @default.
- W3037492164 cites W2603834682 @default.
- W3037492164 cites W2742982421 @default.
- W3037492164 cites W2752367870 @default.
- W3037492164 cites W2775069442 @default.
- W3037492164 cites W2776146695 @default.
- W3037492164 cites W2792055700 @default.
- W3037492164 cites W2793927960 @default.
- W3037492164 cites W2802685919 @default.
- W3037492164 cites W2802872875 @default.
- W3037492164 cites W2803051956 @default.
- W3037492164 cites W2891367133 @default.
- W3037492164 cites W2969945043 @default.
- W3037492164 cites W2996836954 @default.
- W3037492164 cites W2998592969 @default.
- W3037492164 cites W2999964161 @default.
- W3037492164 cites W3002769825 @default.
- W3037492164 cites W3005790354 @default.
- W3037492164 cites W3005814862 @default.
- W3037492164 cites W3011934942 @default.
- W3037492164 cites W3022120566 @default.
- W3037492164 cites W3027542479 @default.
- W3037492164 cites W3030256392 @default.
- W3037492164 cites W3102619772 @default.
- W3037492164 cites W3104925044 @default.
- W3037492164 cites W4212883601 @default.
- W3037492164 cites W4232118355 @default.
- W3037492164 cites W4239510810 @default.
- W3037492164 doi "https://doi.org/10.3390/rs12122005" @default.
- W3037492164 hasPublicationYear "2020" @default.
- W3037492164 type Work @default.
- W3037492164 sameAs 3037492164 @default.
- W3037492164 citedByCount "28" @default.
- W3037492164 countsByYear W30374921642020 @default.