Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037497622> ?p ?o ?g. }
- W3037497622 endingPage "392" @default.
- W3037497622 startingPage "384" @default.
- W3037497622 abstract "Elucidating the formation of combustion intermediates is crucial to validate reaction pathways, develop reaction mechanisms and examine kinetic modeling predictions. While high-temperature pyrolysis and oxidation intermediates of alkanes have been thoroughly studied, comprehensive analysis of cool flame intermediates from alkane autoxidation is lacking and challenging due to the complexity of intermediate species produced. In this work, jet-stirred reactor autoxidation of four C10 alkanes: n-decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane, as model compounds of diesel fuel, was investigated from 500 to 630 K using synchrotron vacuum ultraviolet photoionization molecular beam mass spectrometry (SVUV-PIMS). Around 100 intermediates were detected for each fuel. The classes of molecular structures present during the autoxidation of the representative paraffinic functional groups in transport fuels, i.e., n-alkanes, branched alkanes, and cycloalkanes were established and were found to be similar from the oxidation of various alkanes. A theoretical approach was applied to estimate the photoionization cross sections of the intermediates with the same carbon skeleton as the reactants, e.g., alkene, alkenyl keto, cyclic ether, dione, keto-hydroperoxide, diketo-hydroperoxide, and keto-dihydroperoxide. These species are indicators of the first, second, and third O2 addition reactions for the four C10 hydrocarbons, as well as bimolecular reactions involving keto-hydroperoxides. Chemical kinetic models for the oxidation of these four fuels were examined by comparison against mole fraction of the reactants and final products obtained in additional experiments using gas chromatography analysis, as well as the detailed species pool and mole fractions of aforementioned seven types of intermediates measured by SVUV-PIMS. This works reveals that the models in the literature need to be improved, not only the prediction of the fuel reactivity and final products, but also the reaction network to predict the formation of many previous undetected intermediates." @default.
- W3037497622 created "2020-07-02" @default.
- W3037497622 creator A5005332754 @default.
- W3037497622 creator A5024017867 @default.
- W3037497622 creator A5054978407 @default.
- W3037497622 creator A5059658342 @default.
- W3037497622 creator A5064877543 @default.
- W3037497622 creator A5071068919 @default.
- W3037497622 creator A5075501475 @default.
- W3037497622 creator A5076179220 @default.
- W3037497622 creator A5091457062 @default.
- W3037497622 date "2020-09-01" @default.
- W3037497622 modified "2023-10-15" @default.
- W3037497622 title "Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane" @default.
- W3037497622 cites W1979241367 @default.
- W3037497622 cites W1981349960 @default.
- W3037497622 cites W1984746227 @default.
- W3037497622 cites W2000137064 @default.
- W3037497622 cites W2005655883 @default.
- W3037497622 cites W2009966663 @default.
- W3037497622 cites W2010755506 @default.
- W3037497622 cites W2011084153 @default.
- W3037497622 cites W2018901497 @default.
- W3037497622 cites W2024566222 @default.
- W3037497622 cites W2040585761 @default.
- W3037497622 cites W2041404118 @default.
- W3037497622 cites W2049619809 @default.
- W3037497622 cites W2056049232 @default.
- W3037497622 cites W2061444405 @default.
- W3037497622 cites W2063807605 @default.
- W3037497622 cites W2067809794 @default.
- W3037497622 cites W2075596910 @default.
- W3037497622 cites W2082443185 @default.
- W3037497622 cites W2095990435 @default.
- W3037497622 cites W2148506062 @default.
- W3037497622 cites W2171504088 @default.
- W3037497622 cites W2203213145 @default.
- W3037497622 cites W2278016360 @default.
- W3037497622 cites W2325787910 @default.
- W3037497622 cites W2327819236 @default.
- W3037497622 cites W2462855827 @default.
- W3037497622 cites W2463410676 @default.
- W3037497622 cites W2482655897 @default.
- W3037497622 cites W2518843691 @default.
- W3037497622 cites W2523645431 @default.
- W3037497622 cites W2588066764 @default.
- W3037497622 cites W2737493272 @default.
- W3037497622 cites W2761008658 @default.
- W3037497622 cites W2761910953 @default.
- W3037497622 cites W2763805534 @default.
- W3037497622 cites W2769839107 @default.
- W3037497622 cites W2773411653 @default.
- W3037497622 cites W2893851221 @default.
- W3037497622 cites W2937616438 @default.
- W3037497622 cites W2941049967 @default.
- W3037497622 cites W2966831305 @default.
- W3037497622 cites W2970496568 @default.
- W3037497622 cites W2999978130 @default.
- W3037497622 doi "https://doi.org/10.1016/j.combustflame.2020.06.003" @default.
- W3037497622 hasPublicationYear "2020" @default.
- W3037497622 type Work @default.
- W3037497622 sameAs 3037497622 @default.
- W3037497622 citedByCount "13" @default.
- W3037497622 countsByYear W30374976222021 @default.
- W3037497622 countsByYear W30374976222022 @default.
- W3037497622 countsByYear W30374976222023 @default.
- W3037497622 crossrefType "journal-article" @default.
- W3037497622 hasAuthorship W3037497622A5005332754 @default.
- W3037497622 hasAuthorship W3037497622A5024017867 @default.
- W3037497622 hasAuthorship W3037497622A5054978407 @default.
- W3037497622 hasAuthorship W3037497622A5059658342 @default.
- W3037497622 hasAuthorship W3037497622A5064877543 @default.
- W3037497622 hasAuthorship W3037497622A5071068919 @default.
- W3037497622 hasAuthorship W3037497622A5075501475 @default.
- W3037497622 hasAuthorship W3037497622A5076179220 @default.
- W3037497622 hasAuthorship W3037497622A5091457062 @default.
- W3037497622 hasBestOaLocation W30374976221 @default.
- W3037497622 hasConcept C105768512 @default.
- W3037497622 hasConcept C105923489 @default.
- W3037497622 hasConcept C138171918 @default.
- W3037497622 hasConcept C145148216 @default.
- W3037497622 hasConcept C158749347 @default.
- W3037497622 hasConcept C161790260 @default.
- W3037497622 hasConcept C178790620 @default.
- W3037497622 hasConcept C185592680 @default.
- W3037497622 hasConcept C198291218 @default.
- W3037497622 hasConcept C2776981874 @default.
- W3037497622 hasConcept C2777207669 @default.
- W3037497622 hasConcept C2781327020 @default.
- W3037497622 hasConcept C37329643 @default.
- W3037497622 hasConcept C75473681 @default.
- W3037497622 hasConceptScore W3037497622C105768512 @default.
- W3037497622 hasConceptScore W3037497622C105923489 @default.
- W3037497622 hasConceptScore W3037497622C138171918 @default.
- W3037497622 hasConceptScore W3037497622C145148216 @default.
- W3037497622 hasConceptScore W3037497622C158749347 @default.
- W3037497622 hasConceptScore W3037497622C161790260 @default.
- W3037497622 hasConceptScore W3037497622C178790620 @default.