Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037530965> ?p ?o ?g. }
- W3037530965 endingPage "184" @default.
- W3037530965 startingPage "170" @default.
- W3037530965 abstract "The goal of this article is to review the use of machine learning (ML) within studies of environmental exposures and children’s health, identify common themes across studies, and provide recommendations to advance their use in research and practice. We identified 42 articles reporting upon the use of ML within studies of environmental exposures and children’s health between 2017 and 2019. The common themes among the articles were analysis of mixture data, exposure prediction, disease prediction and forecasting, analysis of complex data, and causal inference. With the increasing complexity of environmental health data, we anticipate greater use of ML to address the challenges that cannot be handled by traditional analytics. In order for these methods to beneficially impact public health, the ML techniques we use need to be appropriate for our study questions, rigorously evaluated and reported in a way that can be critically assessed by the scientific community." @default.
- W3037530965 created "2020-07-02" @default.
- W3037530965 creator A5029271065 @default.
- W3037530965 creator A5080301373 @default.
- W3037530965 date "2020-06-23" @default.
- W3037530965 modified "2023-09-26" @default.
- W3037530965 title "Machine Learning Within Studies of Early-Life Environmental Exposures and Child Health: Review of the Current Literature and Discussion of Next Steps" @default.
- W3037530965 cites W1901616594 @default.
- W3037530965 cites W1993210636 @default.
- W3037530965 cites W1999822211 @default.
- W3037530965 cites W2006783986 @default.
- W3037530965 cites W2011430131 @default.
- W3037530965 cites W2110071229 @default.
- W3037530965 cites W2120106657 @default.
- W3037530965 cites W2138028307 @default.
- W3037530965 cites W2142930729 @default.
- W3037530965 cites W2151512117 @default.
- W3037530965 cites W2277736791 @default.
- W3037530965 cites W2321635716 @default.
- W3037530965 cites W2405956139 @default.
- W3037530965 cites W2462794150 @default.
- W3037530965 cites W2487770199 @default.
- W3037530965 cites W2526047447 @default.
- W3037530965 cites W2530164615 @default.
- W3037530965 cites W2534904709 @default.
- W3037530965 cites W2559599946 @default.
- W3037530965 cites W2592228743 @default.
- W3037530965 cites W2592385888 @default.
- W3037530965 cites W2604675629 @default.
- W3037530965 cites W2620123472 @default.
- W3037530965 cites W2633635401 @default.
- W3037530965 cites W2725161792 @default.
- W3037530965 cites W2730524918 @default.
- W3037530965 cites W2739358848 @default.
- W3037530965 cites W2744430605 @default.
- W3037530965 cites W2753742791 @default.
- W3037530965 cites W2763327376 @default.
- W3037530965 cites W2765658670 @default.
- W3037530965 cites W2768650472 @default.
- W3037530965 cites W2775244970 @default.
- W3037530965 cites W2779908660 @default.
- W3037530965 cites W2781122472 @default.
- W3037530965 cites W2782785618 @default.
- W3037530965 cites W2784094750 @default.
- W3037530965 cites W2785733119 @default.
- W3037530965 cites W2789682496 @default.
- W3037530965 cites W2790202404 @default.
- W3037530965 cites W2790544963 @default.
- W3037530965 cites W2794070284 @default.
- W3037530965 cites W2795107686 @default.
- W3037530965 cites W2795561663 @default.
- W3037530965 cites W2803713979 @default.
- W3037530965 cites W2810021747 @default.
- W3037530965 cites W2810399079 @default.
- W3037530965 cites W2885217354 @default.
- W3037530965 cites W2885704527 @default.
- W3037530965 cites W2886849137 @default.
- W3037530965 cites W2890804838 @default.
- W3037530965 cites W2900110912 @default.
- W3037530965 cites W2901150100 @default.
- W3037530965 cites W2901460997 @default.
- W3037530965 cites W2902253498 @default.
- W3037530965 cites W2902281111 @default.
- W3037530965 cites W2909013967 @default.
- W3037530965 cites W2911540598 @default.
- W3037530965 cites W2911964244 @default.
- W3037530965 cites W2913997948 @default.
- W3037530965 cites W2914438210 @default.
- W3037530965 cites W2914843779 @default.
- W3037530965 cites W2918038706 @default.
- W3037530965 cites W2932245060 @default.
- W3037530965 cites W2932579789 @default.
- W3037530965 cites W2940357664 @default.
- W3037530965 cites W2942473873 @default.
- W3037530965 cites W2944521226 @default.
- W3037530965 cites W2944808959 @default.
- W3037530965 cites W2946513928 @default.
- W3037530965 cites W2946558602 @default.
- W3037530965 cites W2957103736 @default.
- W3037530965 cites W2961107787 @default.
- W3037530965 cites W2969776128 @default.
- W3037530965 cites W2971737841 @default.
- W3037530965 cites W2973032093 @default.
- W3037530965 cites W2973636901 @default.
- W3037530965 cites W2980031238 @default.
- W3037530965 cites W2981869278 @default.
- W3037530965 cites W2996480032 @default.
- W3037530965 cites W4233056867 @default.
- W3037530965 doi "https://doi.org/10.1007/s40572-020-00282-5" @default.
- W3037530965 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7483339" @default.
- W3037530965 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32578067" @default.
- W3037530965 hasPublicationYear "2020" @default.
- W3037530965 type Work @default.
- W3037530965 sameAs 3037530965 @default.
- W3037530965 citedByCount "9" @default.
- W3037530965 countsByYear W30375309652021 @default.
- W3037530965 countsByYear W30375309652022 @default.
- W3037530965 countsByYear W30375309652023 @default.