Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037587714> ?p ?o ?g. }
- W3037587714 endingPage "2010" @default.
- W3037587714 startingPage "2010" @default.
- W3037587714 abstract "The diversity of change detection (CD) methods and the limitations in generalizing these techniques using different types of remote sensing datasets over various study areas have been a challenge for CD applications. Additionally, most CD methods have been implemented in two intensive and time-consuming steps: (a) predicting change areas, and (b) decision on predicted areas. In this study, a novel CD framework based on the convolutional neural network (CNN) is proposed to not only address the aforementioned problems but also to considerably improve the level of accuracy. The proposed CNN-based CD network contains three parallel channels: the first and second channels, respectively, extract deep features on the original first- and second-time imagery and the third channel focuses on the extraction of change deep features based on differencing and staking deep features. Additionally, each channel includes three types of convolution kernels: 1D-, 2D-, and 3D-dilated-convolution. The effectiveness and reliability of the proposed CD method are evaluated using three different types of remote sensing benchmark datasets (i.e., multispectral, hyperspectral, and Polarimetric Synthetic Aperture RADAR (PolSAR)). The results of the CD maps are also evaluated both visually and statistically by calculating nine different accuracy indices. Moreover, the results of the CD using the proposed method are compared to those of several state-of-the-art CD algorithms. All the results prove that the proposed method outperforms the other remote sensing CD techniques. For instance, considering different scenarios, the Overall Accuracies (OAs) and Kappa Coefficients (KCs) of the proposed CD method are better than 95.89% and 0.805, respectively, and the Miss Detection (MD) and the False Alarm (FA) rates are lower than 12% and 3%, respectively." @default.
- W3037587714 created "2020-07-02" @default.
- W3037587714 creator A5003591539 @default.
- W3037587714 creator A5018156889 @default.
- W3037587714 creator A5020765155 @default.
- W3037587714 date "2020-06-23" @default.
- W3037587714 modified "2023-10-16" @default.
- W3037587714 title "A New End-to-End Multi-Dimensional CNN Framework for Land Cover/Land Use Change Detection in Multi-Source Remote Sensing Datasets" @default.
- W3037587714 cites W1555161590 @default.
- W3037587714 cites W1964669384 @default.
- W3037587714 cites W1979061792 @default.
- W3037587714 cites W2001298088 @default.
- W3037587714 cites W2006383776 @default.
- W3037587714 cites W2085567910 @default.
- W3037587714 cites W2089327948 @default.
- W3037587714 cites W2096328930 @default.
- W3037587714 cites W2105993120 @default.
- W3037587714 cites W2110873156 @default.
- W3037587714 cites W2134969826 @default.
- W3037587714 cites W2157026765 @default.
- W3037587714 cites W2159872961 @default.
- W3037587714 cites W2314785379 @default.
- W3037587714 cites W2334023959 @default.
- W3037587714 cites W2518815253 @default.
- W3037587714 cites W2736719870 @default.
- W3037587714 cites W2773926432 @default.
- W3037587714 cites W2783608381 @default.
- W3037587714 cites W2809254203 @default.
- W3037587714 cites W2883305476 @default.
- W3037587714 cites W2889211735 @default.
- W3037587714 cites W2898923688 @default.
- W3037587714 cites W2900587135 @default.
- W3037587714 cites W2905181079 @default.
- W3037587714 cites W2910071851 @default.
- W3037587714 cites W2910587630 @default.
- W3037587714 cites W2911648799 @default.
- W3037587714 cites W2911976185 @default.
- W3037587714 cites W2912323362 @default.
- W3037587714 cites W2914272072 @default.
- W3037587714 cites W2914331134 @default.
- W3037587714 cites W2914676574 @default.
- W3037587714 cites W2917189553 @default.
- W3037587714 cites W2921886782 @default.
- W3037587714 cites W2948638562 @default.
- W3037587714 cites W2953308875 @default.
- W3037587714 cites W2963273475 @default.
- W3037587714 cites W2965608468 @default.
- W3037587714 cites W2967626412 @default.
- W3037587714 cites W2969662039 @default.
- W3037587714 cites W2980725593 @default.
- W3037587714 cites W2983391997 @default.
- W3037587714 cites W2991575127 @default.
- W3037587714 cites W2994033677 @default.
- W3037587714 cites W2995054852 @default.
- W3037587714 cites W2997968425 @default.
- W3037587714 cites W3000451586 @default.
- W3037587714 cites W3002349559 @default.
- W3037587714 cites W3004839151 @default.
- W3037587714 cites W3005491787 @default.
- W3037587714 cites W3009850435 @default.
- W3037587714 cites W3011614889 @default.
- W3037587714 cites W3015167329 @default.
- W3037587714 cites W3099831940 @default.
- W3037587714 doi "https://doi.org/10.3390/rs12122010" @default.
- W3037587714 hasPublicationYear "2020" @default.
- W3037587714 type Work @default.
- W3037587714 sameAs 3037587714 @default.
- W3037587714 citedByCount "54" @default.
- W3037587714 countsByYear W30375877142020 @default.
- W3037587714 countsByYear W30375877142021 @default.
- W3037587714 countsByYear W30375877142022 @default.
- W3037587714 countsByYear W30375877142023 @default.
- W3037587714 crossrefType "journal-article" @default.
- W3037587714 hasAuthorship W3037587714A5003591539 @default.
- W3037587714 hasAuthorship W3037587714A5018156889 @default.
- W3037587714 hasAuthorship W3037587714A5020765155 @default.
- W3037587714 hasBestOaLocation W30375877141 @default.
- W3037587714 hasConcept C108583219 @default.
- W3037587714 hasConcept C124101348 @default.
- W3037587714 hasConcept C127313418 @default.
- W3037587714 hasConcept C127413603 @default.
- W3037587714 hasConcept C147176958 @default.
- W3037587714 hasConcept C153180895 @default.
- W3037587714 hasConcept C154945302 @default.
- W3037587714 hasConcept C159078339 @default.
- W3037587714 hasConcept C173163844 @default.
- W3037587714 hasConcept C185798385 @default.
- W3037587714 hasConcept C203595873 @default.
- W3037587714 hasConcept C205649164 @default.
- W3037587714 hasConcept C2780648208 @default.
- W3037587714 hasConcept C41008148 @default.
- W3037587714 hasConcept C45347329 @default.
- W3037587714 hasConcept C4792198 @default.
- W3037587714 hasConcept C50644808 @default.
- W3037587714 hasConcept C58640448 @default.
- W3037587714 hasConcept C62649853 @default.
- W3037587714 hasConcept C81363708 @default.
- W3037587714 hasConceptScore W3037587714C108583219 @default.