Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037610916> ?p ?o ?g. }
- W3037610916 endingPage "113663" @default.
- W3037610916 startingPage "113663" @default.
- W3037610916 abstract "The problem of automatically measuring the degree of semantic similarity between textual expressions is a challenge that consists of calculating the degree of likeness between two text fragments that have none or few features in common according to human judgment. In recent times, several machine learning methods have been able to establish a new state-of-the-art regarding the accuracy, but none or little attention has been paid to their interpretability, i.e. the extent to which an end-user could be able to understand the cause of the output from these approaches. Although such solutions based on symbolic regression already exist in the field of clustering, we propose here a new approach which is being able to reach high levels of interpretability without sacrificing accuracy in the context of semantic textual similarity. After a complete empirical evaluation using several benchmark datasets, it is shown that our approach yields promising results in a wide range of scenarios." @default.
- W3037610916 created "2020-07-02" @default.
- W3037610916 creator A5014798665 @default.
- W3037610916 creator A5024343171 @default.
- W3037610916 date "2020-12-01" @default.
- W3037610916 modified "2023-10-18" @default.
- W3037610916 title "A novel method based on symbolic regression for interpretable semantic similarity measurement" @default.
- W3037610916 cites W10647322 @default.
- W3037610916 cites W1659833910 @default.
- W3037610916 cites W1902027874 @default.
- W3037610916 cites W1980885411 @default.
- W3037610916 cites W1990302601 @default.
- W3037610916 cites W2016886590 @default.
- W3037610916 cites W2043003550 @default.
- W3037610916 cites W2055476720 @default.
- W3037610916 cites W2059975159 @default.
- W3037610916 cites W2065602513 @default.
- W3037610916 cites W2081907387 @default.
- W3037610916 cites W2084377579 @default.
- W3037610916 cites W2096810317 @default.
- W3037610916 cites W2099938389 @default.
- W3037610916 cites W2103318667 @default.
- W3037610916 cites W2103672265 @default.
- W3037610916 cites W2114077504 @default.
- W3037610916 cites W2123457740 @default.
- W3037610916 cites W2132885068 @default.
- W3037610916 cites W2147152072 @default.
- W3037610916 cites W2165897980 @default.
- W3037610916 cites W2240029300 @default.
- W3037610916 cites W2286048112 @default.
- W3037610916 cites W2464272265 @default.
- W3037610916 cites W2471817187 @default.
- W3037610916 cites W2493916176 @default.
- W3037610916 cites W2511869391 @default.
- W3037610916 cites W2589657480 @default.
- W3037610916 cites W2939693712 @default.
- W3037610916 cites W2962790223 @default.
- W3037610916 cites W2963947304 @default.
- W3037610916 cites W2980042781 @default.
- W3037610916 cites W342285082 @default.
- W3037610916 doi "https://doi.org/10.1016/j.eswa.2020.113663" @default.
- W3037610916 hasPublicationYear "2020" @default.
- W3037610916 type Work @default.
- W3037610916 sameAs 3037610916 @default.
- W3037610916 citedByCount "11" @default.
- W3037610916 countsByYear W30376109162021 @default.
- W3037610916 countsByYear W30376109162022 @default.
- W3037610916 countsByYear W30376109162023 @default.
- W3037610916 crossrefType "journal-article" @default.
- W3037610916 hasAuthorship W3037610916A5014798665 @default.
- W3037610916 hasAuthorship W3037610916A5024343171 @default.
- W3037610916 hasConcept C103278499 @default.
- W3037610916 hasConcept C105795698 @default.
- W3037610916 hasConcept C110332635 @default.
- W3037610916 hasConcept C115961682 @default.
- W3037610916 hasConcept C119857082 @default.
- W3037610916 hasConcept C124101348 @default.
- W3037610916 hasConcept C130318100 @default.
- W3037610916 hasConcept C13280743 @default.
- W3037610916 hasConcept C151730666 @default.
- W3037610916 hasConcept C154945302 @default.
- W3037610916 hasConcept C159985019 @default.
- W3037610916 hasConcept C185798385 @default.
- W3037610916 hasConcept C192562407 @default.
- W3037610916 hasConcept C202444582 @default.
- W3037610916 hasConcept C204321447 @default.
- W3037610916 hasConcept C204323151 @default.
- W3037610916 hasConcept C205649164 @default.
- W3037610916 hasConcept C2776400721 @default.
- W3037610916 hasConcept C2779343474 @default.
- W3037610916 hasConcept C2781067378 @default.
- W3037610916 hasConcept C33923547 @default.
- W3037610916 hasConcept C41008148 @default.
- W3037610916 hasConcept C73555534 @default.
- W3037610916 hasConcept C83546350 @default.
- W3037610916 hasConcept C86803240 @default.
- W3037610916 hasConcept C9652623 @default.
- W3037610916 hasConceptScore W3037610916C103278499 @default.
- W3037610916 hasConceptScore W3037610916C105795698 @default.
- W3037610916 hasConceptScore W3037610916C110332635 @default.
- W3037610916 hasConceptScore W3037610916C115961682 @default.
- W3037610916 hasConceptScore W3037610916C119857082 @default.
- W3037610916 hasConceptScore W3037610916C124101348 @default.
- W3037610916 hasConceptScore W3037610916C130318100 @default.
- W3037610916 hasConceptScore W3037610916C13280743 @default.
- W3037610916 hasConceptScore W3037610916C151730666 @default.
- W3037610916 hasConceptScore W3037610916C154945302 @default.
- W3037610916 hasConceptScore W3037610916C159985019 @default.
- W3037610916 hasConceptScore W3037610916C185798385 @default.
- W3037610916 hasConceptScore W3037610916C192562407 @default.
- W3037610916 hasConceptScore W3037610916C202444582 @default.
- W3037610916 hasConceptScore W3037610916C204321447 @default.
- W3037610916 hasConceptScore W3037610916C204323151 @default.
- W3037610916 hasConceptScore W3037610916C205649164 @default.
- W3037610916 hasConceptScore W3037610916C2776400721 @default.
- W3037610916 hasConceptScore W3037610916C2779343474 @default.
- W3037610916 hasConceptScore W3037610916C2781067378 @default.
- W3037610916 hasConceptScore W3037610916C33923547 @default.