Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037626565> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3037626565 endingPage "113667" @default.
- W3037626565 startingPage "113667" @default.
- W3037626565 abstract "Describing texture is a very challenging problem for many image-based expert and intelligent systems (e.g. defective product detection, people re-identification, abnormality investigation in medical imaging and remote sensing applications…) since the process of texture classification relies on the quality of the extracted features. Indeed, detecting and extracting features is a hard and time-consuming task that requires the intervention of an expert, notably when dealing with challenging textures. Thus, machine learning-based descriptors have emerged as another alternative to deal with the difficulty of feature extracting. In this work, we propose a new operator, which we named Local Edge Signature (LES) descriptor, to locally represent texture. The proposed texture descriptor is based on statistical information on edge pixels’ arrangement and orientation in a specific local region, and it is insensitive to rotation and scale changes. A genetic programming-based approach is then fitted to automatically learn a global texture descriptor that we called Genetic Texture Signature (GTS). In fact, a tree representation of individuals is used to generate global texture features by applying elementary operations on LES elements at a set of keypoints, and a fitness function evaluates the descriptors considering intra-class homogeneity and inter-class discrimination properties of their generated features. The obtained results, on six challenging texture datasets (Brodatz, Outex_TC_00000, Outex_TC_00013, KTH-TIPS, KTH-TIPS2b and UIUCTex), show that the proposed classification method, which is fully automated, achieves state-of-the-art performance, especially when the number of available training samples is limited." @default.
- W3037626565 created "2020-07-02" @default.
- W3037626565 creator A5010408919 @default.
- W3037626565 creator A5064964201 @default.
- W3037626565 date "2020-12-01" @default.
- W3037626565 modified "2023-10-03" @default.
- W3037626565 title "Genetic programming-based learning of texture classification descriptors from Local Edge Signature" @default.
- W3037626565 cites W1574818812 @default.
- W3037626565 cites W1800439357 @default.
- W3037626565 cites W1968245656 @default.
- W3037626565 cites W1971877752 @default.
- W3037626565 cites W1975959625 @default.
- W3037626565 cites W1994625197 @default.
- W3037626565 cites W2016291785 @default.
- W3037626565 cites W2026180175 @default.
- W3037626565 cites W2044465660 @default.
- W3037626565 cites W2058160332 @default.
- W3037626565 cites W2059432853 @default.
- W3037626565 cites W2069481589 @default.
- W3037626565 cites W2073707096 @default.
- W3037626565 cites W2110133912 @default.
- W3037626565 cites W2117395697 @default.
- W3037626565 cites W2120587770 @default.
- W3037626565 cites W2126833203 @default.
- W3037626565 cites W2133990480 @default.
- W3037626565 cites W2143598084 @default.
- W3037626565 cites W2147141800 @default.
- W3037626565 cites W2154823510 @default.
- W3037626565 cites W2159988601 @default.
- W3037626565 cites W2163352848 @default.
- W3037626565 cites W2171134985 @default.
- W3037626565 cites W2172029476 @default.
- W3037626565 cites W2597459486 @default.
- W3037626565 cites W2602747466 @default.
- W3037626565 cites W2757026484 @default.
- W3037626565 cites W2802143680 @default.
- W3037626565 cites W2886468927 @default.
- W3037626565 cites W2900713200 @default.
- W3037626565 cites W2904419612 @default.
- W3037626565 cites W2911339257 @default.
- W3037626565 cites W2944938295 @default.
- W3037626565 cites W2947832869 @default.
- W3037626565 cites W2980545885 @default.
- W3037626565 cites W2988004963 @default.
- W3037626565 cites W3021844924 @default.
- W3037626565 doi "https://doi.org/10.1016/j.eswa.2020.113667" @default.
- W3037626565 hasPublicationYear "2020" @default.
- W3037626565 type Work @default.
- W3037626565 sameAs 3037626565 @default.
- W3037626565 citedByCount "12" @default.
- W3037626565 countsByYear W30376265652020 @default.
- W3037626565 countsByYear W30376265652021 @default.
- W3037626565 countsByYear W30376265652022 @default.
- W3037626565 countsByYear W30376265652023 @default.
- W3037626565 crossrefType "journal-article" @default.
- W3037626565 hasAuthorship W3037626565A5010408919 @default.
- W3037626565 hasAuthorship W3037626565A5064964201 @default.
- W3037626565 hasConcept C110332635 @default.
- W3037626565 hasConcept C115961682 @default.
- W3037626565 hasConcept C153180895 @default.
- W3037626565 hasConcept C154945302 @default.
- W3037626565 hasConcept C160633673 @default.
- W3037626565 hasConcept C2781195486 @default.
- W3037626565 hasConcept C41008148 @default.
- W3037626565 hasConceptScore W3037626565C110332635 @default.
- W3037626565 hasConceptScore W3037626565C115961682 @default.
- W3037626565 hasConceptScore W3037626565C153180895 @default.
- W3037626565 hasConceptScore W3037626565C154945302 @default.
- W3037626565 hasConceptScore W3037626565C160633673 @default.
- W3037626565 hasConceptScore W3037626565C2781195486 @default.
- W3037626565 hasConceptScore W3037626565C41008148 @default.
- W3037626565 hasLocation W30376265651 @default.
- W3037626565 hasOpenAccess W3037626565 @default.
- W3037626565 hasPrimaryLocation W30376265651 @default.
- W3037626565 hasRelatedWork W2033914206 @default.
- W3037626565 hasRelatedWork W2046077695 @default.
- W3037626565 hasRelatedWork W2090093270 @default.
- W3037626565 hasRelatedWork W2114889067 @default.
- W3037626565 hasRelatedWork W2136485282 @default.
- W3037626565 hasRelatedWork W2146076056 @default.
- W3037626565 hasRelatedWork W2163831990 @default.
- W3037626565 hasRelatedWork W2546871836 @default.
- W3037626565 hasRelatedWork W3003836766 @default.
- W3037626565 hasRelatedWork W3115043162 @default.
- W3037626565 hasVolume "161" @default.
- W3037626565 isParatext "false" @default.
- W3037626565 isRetracted "false" @default.
- W3037626565 magId "3037626565" @default.
- W3037626565 workType "article" @default.