Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037633128> ?p ?o ?g. }
- W3037633128 endingPage "075007" @default.
- W3037633128 startingPage "075007" @default.
- W3037633128 abstract "Objective: Brain–computer interfaces (BCIs) are aimed at providing a new way of communication between the human brain and external devices. One of the major tasks associated with the BCI system is to improve classification performance of the motor imagery (MI) signal. Electroencephalogram (EEG) signals are widely used for the MI BCI system. The raw EEG signals are usually non-stationary time series with weak class properties, degrading the classification performance. Approach: Nonnegative matrix factorization (NMF) has been successfully applied to pattern extraction which provides meaningful data presentation. However, NMF is unsupervised and cannot make use of the label information. Based on the label information of MI EEG data, we propose a novel method, called double-constrained nonnegative matrix factorization (DCNMF), to improve the classification performance of NMF on MI BCI. The proposed method constructs a couple of label matrices as the constraints on the NMF procedure to make the EEGs with the same class labels have the similar representation in the low-dimensional space, while the EEGs with different class labels have dissimilar representations as much as possible. Accordingly, the extracted features obtain obvious class properties, which are optimal to the classification of MI EEG. Main results: This study is conducted on the BCI competition III datasets (I and IVa). The proposed method helps to achieve a higher average accuracy across two datasets (79.00% for dataset I, 77.78% for dataset IVa); its performance is about 10% better than the existing studies in the literature. Significance: Our study provides a novel solution for MI BCI analysis from the perspective of label constraint; it provides convenience for semi-supervised learning of features and significantly improves the classification performance." @default.
- W3037633128 created "2020-07-02" @default.
- W3037633128 creator A5065304272 @default.
- W3037633128 creator A5065979541 @default.
- W3037633128 creator A5069624559 @default.
- W3037633128 creator A5070936974 @default.
- W3037633128 date "2020-08-11" @default.
- W3037633128 modified "2023-10-16" @default.
- W3037633128 title "Electroencephalogram classification in motor-imagery brain–computer interface applications based on double-constraint nonnegative matrix factorization" @default.
- W3037633128 cites W1653844963 @default.
- W3037633128 cites W1967184756 @default.
- W3037633128 cites W1975194708 @default.
- W3037633128 cites W1982355325 @default.
- W3037633128 cites W2038010805 @default.
- W3037633128 cites W2052059892 @default.
- W3037633128 cites W2100409538 @default.
- W3037633128 cites W2104819583 @default.
- W3037633128 cites W2108119513 @default.
- W3037633128 cites W2108919995 @default.
- W3037633128 cites W2112225127 @default.
- W3037633128 cites W2121123096 @default.
- W3037633128 cites W2142280324 @default.
- W3037633128 cites W2152119085 @default.
- W3037633128 cites W2168103112 @default.
- W3037633128 cites W2170986858 @default.
- W3037633128 cites W2342866759 @default.
- W3037633128 cites W2401637635 @default.
- W3037633128 cites W2464293894 @default.
- W3037633128 cites W2512451935 @default.
- W3037633128 cites W2521878393 @default.
- W3037633128 cites W2534116132 @default.
- W3037633128 cites W2567841602 @default.
- W3037633128 cites W2568678377 @default.
- W3037633128 cites W2582873139 @default.
- W3037633128 cites W2594769188 @default.
- W3037633128 cites W2742438964 @default.
- W3037633128 cites W2748391982 @default.
- W3037633128 cites W2765817727 @default.
- W3037633128 cites W2769043698 @default.
- W3037633128 cites W2796116016 @default.
- W3037633128 cites W2802723950 @default.
- W3037633128 cites W2895548766 @default.
- W3037633128 cites W2952176275 @default.
- W3037633128 cites W2953384096 @default.
- W3037633128 doi "https://doi.org/10.1088/1361-6579/aba07b" @default.
- W3037633128 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32590360" @default.
- W3037633128 hasPublicationYear "2020" @default.
- W3037633128 type Work @default.
- W3037633128 sameAs 3037633128 @default.
- W3037633128 citedByCount "8" @default.
- W3037633128 countsByYear W30376331282021 @default.
- W3037633128 countsByYear W30376331282022 @default.
- W3037633128 countsByYear W30376331282023 @default.
- W3037633128 crossrefType "journal-article" @default.
- W3037633128 hasAuthorship W3037633128A5065304272 @default.
- W3037633128 hasAuthorship W3037633128A5065979541 @default.
- W3037633128 hasAuthorship W3037633128A5069624559 @default.
- W3037633128 hasAuthorship W3037633128A5070936974 @default.
- W3037633128 hasConcept C113843644 @default.
- W3037633128 hasConcept C118552586 @default.
- W3037633128 hasConcept C121332964 @default.
- W3037633128 hasConcept C129307140 @default.
- W3037633128 hasConcept C152671427 @default.
- W3037633128 hasConcept C153180895 @default.
- W3037633128 hasConcept C154945302 @default.
- W3037633128 hasConcept C15744967 @default.
- W3037633128 hasConcept C157915830 @default.
- W3037633128 hasConcept C158693339 @default.
- W3037633128 hasConcept C173201364 @default.
- W3037633128 hasConcept C173608175 @default.
- W3037633128 hasConcept C2524010 @default.
- W3037633128 hasConcept C2776036281 @default.
- W3037633128 hasConcept C2777212361 @default.
- W3037633128 hasConcept C33923547 @default.
- W3037633128 hasConcept C41008148 @default.
- W3037633128 hasConcept C42355184 @default.
- W3037633128 hasConcept C522805319 @default.
- W3037633128 hasConcept C54808283 @default.
- W3037633128 hasConcept C62520636 @default.
- W3037633128 hasConceptScore W3037633128C113843644 @default.
- W3037633128 hasConceptScore W3037633128C118552586 @default.
- W3037633128 hasConceptScore W3037633128C121332964 @default.
- W3037633128 hasConceptScore W3037633128C129307140 @default.
- W3037633128 hasConceptScore W3037633128C152671427 @default.
- W3037633128 hasConceptScore W3037633128C153180895 @default.
- W3037633128 hasConceptScore W3037633128C154945302 @default.
- W3037633128 hasConceptScore W3037633128C15744967 @default.
- W3037633128 hasConceptScore W3037633128C157915830 @default.
- W3037633128 hasConceptScore W3037633128C158693339 @default.
- W3037633128 hasConceptScore W3037633128C173201364 @default.
- W3037633128 hasConceptScore W3037633128C173608175 @default.
- W3037633128 hasConceptScore W3037633128C2524010 @default.
- W3037633128 hasConceptScore W3037633128C2776036281 @default.
- W3037633128 hasConceptScore W3037633128C2777212361 @default.
- W3037633128 hasConceptScore W3037633128C33923547 @default.
- W3037633128 hasConceptScore W3037633128C41008148 @default.
- W3037633128 hasConceptScore W3037633128C42355184 @default.
- W3037633128 hasConceptScore W3037633128C522805319 @default.