Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037646323> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3037646323 endingPage "1420" @default.
- W3037646323 startingPage "1410" @default.
- W3037646323 abstract "In several domains, data objects can be decomposed into sets of simpler objects. It is then natural to represent each object as the set of its components or parts. Many conventional machine learning algorithms are unable to process this kind of representations, since sets may vary in cardinality and elements lack a meaningful ordering. In this paper, we present a new neural network architecture, called RepSet, that can handle examples that are represented as sets of vectors. The proposed model computes the correspondences between an input set and some hidden sets by solving a series of network flow problems. This representation is then fed to a standard neural network architecture to produce the output. The architecture allows end-to-end gradient-based learning. We demonstrate RepSet on classification tasks, including text categorization, and graph classification, and we show that the proposed neural network achieves performance better or comparable to state-of-the-art algorithms." @default.
- W3037646323 created "2020-07-02" @default.
- W3037646323 creator A5011742954 @default.
- W3037646323 creator A5057695979 @default.
- W3037646323 creator A5058510425 @default.
- W3037646323 creator A5065352009 @default.
- W3037646323 date "2020-06-03" @default.
- W3037646323 modified "2023-09-26" @default.
- W3037646323 title "Rep the Set: Neural Networks for Learning Set Representations" @default.
- W3037646323 hasPublicationYear "2020" @default.
- W3037646323 type Work @default.
- W3037646323 sameAs 3037646323 @default.
- W3037646323 citedByCount "9" @default.
- W3037646323 countsByYear W30376463232020 @default.
- W3037646323 countsByYear W30376463232021 @default.
- W3037646323 crossrefType "proceedings-article" @default.
- W3037646323 hasAuthorship W3037646323A5011742954 @default.
- W3037646323 hasAuthorship W3037646323A5057695979 @default.
- W3037646323 hasAuthorship W3037646323A5058510425 @default.
- W3037646323 hasAuthorship W3037646323A5065352009 @default.
- W3037646323 hasConcept C119857082 @default.
- W3037646323 hasConcept C124101348 @default.
- W3037646323 hasConcept C132525143 @default.
- W3037646323 hasConcept C153180895 @default.
- W3037646323 hasConcept C154945302 @default.
- W3037646323 hasConcept C175202392 @default.
- W3037646323 hasConcept C177264268 @default.
- W3037646323 hasConcept C17744445 @default.
- W3037646323 hasConcept C199360897 @default.
- W3037646323 hasConcept C199539241 @default.
- W3037646323 hasConcept C2776359362 @default.
- W3037646323 hasConcept C41008148 @default.
- W3037646323 hasConcept C50644808 @default.
- W3037646323 hasConcept C80444323 @default.
- W3037646323 hasConcept C87117476 @default.
- W3037646323 hasConcept C94124525 @default.
- W3037646323 hasConcept C94625758 @default.
- W3037646323 hasConceptScore W3037646323C119857082 @default.
- W3037646323 hasConceptScore W3037646323C124101348 @default.
- W3037646323 hasConceptScore W3037646323C132525143 @default.
- W3037646323 hasConceptScore W3037646323C153180895 @default.
- W3037646323 hasConceptScore W3037646323C154945302 @default.
- W3037646323 hasConceptScore W3037646323C175202392 @default.
- W3037646323 hasConceptScore W3037646323C177264268 @default.
- W3037646323 hasConceptScore W3037646323C17744445 @default.
- W3037646323 hasConceptScore W3037646323C199360897 @default.
- W3037646323 hasConceptScore W3037646323C199539241 @default.
- W3037646323 hasConceptScore W3037646323C2776359362 @default.
- W3037646323 hasConceptScore W3037646323C41008148 @default.
- W3037646323 hasConceptScore W3037646323C50644808 @default.
- W3037646323 hasConceptScore W3037646323C80444323 @default.
- W3037646323 hasConceptScore W3037646323C87117476 @default.
- W3037646323 hasConceptScore W3037646323C94124525 @default.
- W3037646323 hasConceptScore W3037646323C94625758 @default.
- W3037646323 hasLocation W30376463231 @default.
- W3037646323 hasOpenAccess W3037646323 @default.
- W3037646323 hasPrimaryLocation W30376463231 @default.
- W3037646323 hasRelatedWork W2019205473 @default.
- W3037646323 hasRelatedWork W2123753389 @default.
- W3037646323 hasRelatedWork W2158131535 @default.
- W3037646323 hasRelatedWork W2242161203 @default.
- W3037646323 hasRelatedWork W2267144497 @default.
- W3037646323 hasRelatedWork W2464870834 @default.
- W3037646323 hasRelatedWork W2754759354 @default.
- W3037646323 hasRelatedWork W2777123966 @default.
- W3037646323 hasRelatedWork W2795787605 @default.
- W3037646323 hasRelatedWork W2799795748 @default.
- W3037646323 hasRelatedWork W2903288601 @default.
- W3037646323 hasRelatedWork W2921527972 @default.
- W3037646323 hasRelatedWork W2935576361 @default.
- W3037646323 hasRelatedWork W2942259124 @default.
- W3037646323 hasRelatedWork W2953273646 @default.
- W3037646323 hasRelatedWork W2995528378 @default.
- W3037646323 hasRelatedWork W3097390889 @default.
- W3037646323 hasRelatedWork W3110636989 @default.
- W3037646323 hasRelatedWork W3171553042 @default.
- W3037646323 hasRelatedWork W3183476263 @default.
- W3037646323 isParatext "false" @default.
- W3037646323 isRetracted "false" @default.
- W3037646323 magId "3037646323" @default.
- W3037646323 workType "article" @default.