Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037655018> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3037655018 endingPage "318" @default.
- W3037655018 startingPage "312" @default.
- W3037655018 abstract "Electrocardiogram (ECG) estimates the electric signals activity of the human heart and is extensively used for sensing heart aberrations due to ease of use and non-invasive application on human body. Human heart is a one of the vital organs of human body. In an industrial environment, heart impairments and abnormalities are attributed to the different causes including work overload, occupational and workplace stress. Cardiovascular Disease (CD) of heart refers the conditions involving different heart’s frequency deviations and are mostly ascribed to the workplace stress, fatigue and strain. Early detection of deviated heartbeats may prevent premature morbidity and unhealthy rhythms under occupational stress. The Electrocardiography (ECG) is one of the widely used diagnostic test tools that cardiologists use to diagnose heart anomalies, impairments and diseases. Various approaches have been proposed to correctly classify the ECG signals. In this study, a fast ECG classification method based on Extreme Learning Machines (ELM) algorithm is proposed to classify the frequency rhythms in heartbeat. The MIT-BIH Arrhythmia Database having recordings of 47 subjects is used in this study. Proposed ELM method is evaluated and analyzed by dividing diagnostics datasets in 60:40 train-test split ratio and findings are compared with similar studies. Results confirm the feasibility of newly proposed ELM method both in terms of classification accuracy 97.55%, speed and computational power." @default.
- W3037655018 created "2020-07-02" @default.
- W3037655018 creator A5019296120 @default.
- W3037655018 creator A5022507230 @default.
- W3037655018 creator A5028511645 @default.
- W3037655018 creator A5034411952 @default.
- W3037655018 creator A5070759206 @default.
- W3037655018 creator A5079270098 @default.
- W3037655018 creator A5083130939 @default.
- W3037655018 creator A5084911559 @default.
- W3037655018 date "2020-06-28" @default.
- W3037655018 modified "2023-10-14" @default.
- W3037655018 title "Efficient Extreme Learning Machine (ELM) Based Algorithm for Electrocardiogram (ECG) Heartbeat Classification" @default.
- W3037655018 cites W1993717606 @default.
- W3037655018 cites W2006442389 @default.
- W3037655018 cites W2031878488 @default.
- W3037655018 cites W2045867791 @default.
- W3037655018 cites W2047181473 @default.
- W3037655018 cites W2098290011 @default.
- W3037655018 cites W2103496339 @default.
- W3037655018 cites W2110246711 @default.
- W3037655018 cites W2111072639 @default.
- W3037655018 cites W2111833294 @default.
- W3037655018 cites W2140920882 @default.
- W3037655018 cites W2162800060 @default.
- W3037655018 cites W2342599402 @default.
- W3037655018 cites W2482102801 @default.
- W3037655018 cites W2540718148 @default.
- W3037655018 cites W2620096328 @default.
- W3037655018 cites W2760529574 @default.
- W3037655018 cites W2802771342 @default.
- W3037655018 cites W2944090083 @default.
- W3037655018 cites W3099743694 @default.
- W3037655018 cites W3106455851 @default.
- W3037655018 doi "https://doi.org/10.1007/978-3-030-51041-1_41" @default.
- W3037655018 hasPublicationYear "2020" @default.
- W3037655018 type Work @default.
- W3037655018 sameAs 3037655018 @default.
- W3037655018 citedByCount "2" @default.
- W3037655018 countsByYear W30376550182021 @default.
- W3037655018 countsByYear W30376550182022 @default.
- W3037655018 crossrefType "book-chapter" @default.
- W3037655018 hasAuthorship W3037655018A5019296120 @default.
- W3037655018 hasAuthorship W3037655018A5022507230 @default.
- W3037655018 hasAuthorship W3037655018A5028511645 @default.
- W3037655018 hasAuthorship W3037655018A5034411952 @default.
- W3037655018 hasAuthorship W3037655018A5070759206 @default.
- W3037655018 hasAuthorship W3037655018A5079270098 @default.
- W3037655018 hasAuthorship W3037655018A5083130939 @default.
- W3037655018 hasAuthorship W3037655018A5084911559 @default.
- W3037655018 hasConcept C11413529 @default.
- W3037655018 hasConcept C119857082 @default.
- W3037655018 hasConcept C13852961 @default.
- W3037655018 hasConcept C153180895 @default.
- W3037655018 hasConcept C154945302 @default.
- W3037655018 hasConcept C2780150128 @default.
- W3037655018 hasConcept C38652104 @default.
- W3037655018 hasConcept C41008148 @default.
- W3037655018 hasConcept C50644808 @default.
- W3037655018 hasConceptScore W3037655018C11413529 @default.
- W3037655018 hasConceptScore W3037655018C119857082 @default.
- W3037655018 hasConceptScore W3037655018C13852961 @default.
- W3037655018 hasConceptScore W3037655018C153180895 @default.
- W3037655018 hasConceptScore W3037655018C154945302 @default.
- W3037655018 hasConceptScore W3037655018C2780150128 @default.
- W3037655018 hasConceptScore W3037655018C38652104 @default.
- W3037655018 hasConceptScore W3037655018C41008148 @default.
- W3037655018 hasConceptScore W3037655018C50644808 @default.
- W3037655018 hasLocation W30376550181 @default.
- W3037655018 hasOpenAccess W3037655018 @default.
- W3037655018 hasPrimaryLocation W30376550181 @default.
- W3037655018 hasRelatedWork W1525510058 @default.
- W3037655018 hasRelatedWork W2295628041 @default.
- W3037655018 hasRelatedWork W2386183059 @default.
- W3037655018 hasRelatedWork W2475251269 @default.
- W3037655018 hasRelatedWork W2797921550 @default.
- W3037655018 hasRelatedWork W2889453578 @default.
- W3037655018 hasRelatedWork W2945765785 @default.
- W3037655018 hasRelatedWork W3134233996 @default.
- W3037655018 hasRelatedWork W3185179407 @default.
- W3037655018 hasRelatedWork W3200591716 @default.
- W3037655018 isParatext "false" @default.
- W3037655018 isRetracted "false" @default.
- W3037655018 magId "3037655018" @default.
- W3037655018 workType "book-chapter" @default.