Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037659411> ?p ?o ?g. }
- W3037659411 endingPage "107098" @default.
- W3037659411 startingPage "107098" @default.
- W3037659411 abstract "The traditional paradigm for developing machine prognostics usually relies on generalization from data acquired in experiments under controlled conditions prior to deployment of the equipment. Detecting or predicting failures and estimating machine health in this way assumes that future field data will have a very similar distribution to the experiment data. However, many complex machines operate under dynamic environmental conditions and are used in many different ways. This makes collecting comprehensive data very challenging, and the assumption that pre-deployment data and post-deployment data follow very similar distributions is unlikely to hold. In this work, we present a feature-representation based transfer learning (TL) method for predicting Remaining Useful Life (RUL) of equipment, under scenarios that samples with previously unseen conditions are presented in the target domain and the labels are available only for the source domain, but not the target domain. This setting corresponds to generalizing from a limited number of run-to-failure experiments performed prior to deployment into making prognostics with data coming from deployed equipment that is being used under multiple new operating conditions and experiencing previously unseen faults. We employ a deviation detection method, Consensus Self-Organizing Models (COSMO), to create transferable features for building the RUL regression model. These features capture how different a particular equipment is in comparison to its peers. The efficiency of the proposed TL method is demonstrated using the NASA Turbofan Engine Degradation Simulation Data Set. Models using the COSMO transferable features show better performance than other methods on predicting RUL when the target domain is more complex than the source domain." @default.
- W3037659411 created "2020-07-02" @default.
- W3037659411 creator A5007440397 @default.
- W3037659411 creator A5019978147 @default.
- W3037659411 creator A5032811876 @default.
- W3037659411 date "2020-11-01" @default.
- W3037659411 modified "2023-10-14" @default.
- W3037659411 title "Transfer learning for remaining useful life prediction based on consensus self-organizing models" @default.
- W3037659411 cites W1540327028 @default.
- W3037659411 cites W1780900385 @default.
- W3037659411 cites W2001129496 @default.
- W3037659411 cites W2033800551 @default.
- W3037659411 cites W2034758150 @default.
- W3037659411 cites W2069441514 @default.
- W3037659411 cites W2087251900 @default.
- W3037659411 cites W2132914434 @default.
- W3037659411 cites W2135663228 @default.
- W3037659411 cites W2152270473 @default.
- W3037659411 cites W2157883849 @default.
- W3037659411 cites W2165698076 @default.
- W3037659411 cites W2199810579 @default.
- W3037659411 cites W2249699048 @default.
- W3037659411 cites W2296609147 @default.
- W3037659411 cites W2412781046 @default.
- W3037659411 cites W2471161958 @default.
- W3037659411 cites W2556013418 @default.
- W3037659411 cites W2594845301 @default.
- W3037659411 cites W2731372149 @default.
- W3037659411 cites W2750352083 @default.
- W3037659411 cites W2772084711 @default.
- W3037659411 cites W2793062918 @default.
- W3037659411 cites W2801712269 @default.
- W3037659411 cites W2887782657 @default.
- W3037659411 cites W2898375427 @default.
- W3037659411 cites W2900529838 @default.
- W3037659411 cites W2902443160 @default.
- W3037659411 cites W2902700103 @default.
- W3037659411 cites W2907541186 @default.
- W3037659411 cites W2915423430 @default.
- W3037659411 cites W2917169831 @default.
- W3037659411 cites W2944364052 @default.
- W3037659411 cites W2946724317 @default.
- W3037659411 cites W2971654674 @default.
- W3037659411 cites W3030489213 @default.
- W3037659411 doi "https://doi.org/10.1016/j.ress.2020.107098" @default.
- W3037659411 hasPublicationYear "2020" @default.
- W3037659411 type Work @default.
- W3037659411 sameAs 3037659411 @default.
- W3037659411 citedByCount "43" @default.
- W3037659411 countsByYear W30376594112020 @default.
- W3037659411 countsByYear W30376594112021 @default.
- W3037659411 countsByYear W30376594112022 @default.
- W3037659411 countsByYear W30376594112023 @default.
- W3037659411 crossrefType "journal-article" @default.
- W3037659411 hasAuthorship W3037659411A5007440397 @default.
- W3037659411 hasAuthorship W3037659411A5019978147 @default.
- W3037659411 hasAuthorship W3037659411A5032811876 @default.
- W3037659411 hasBestOaLocation W30376594112 @default.
- W3037659411 hasConcept C105339364 @default.
- W3037659411 hasConcept C110050840 @default.
- W3037659411 hasConcept C111919701 @default.
- W3037659411 hasConcept C119857082 @default.
- W3037659411 hasConcept C124101348 @default.
- W3037659411 hasConcept C127413603 @default.
- W3037659411 hasConcept C129364497 @default.
- W3037659411 hasConcept C134306372 @default.
- W3037659411 hasConcept C138885662 @default.
- W3037659411 hasConcept C150899416 @default.
- W3037659411 hasConcept C154945302 @default.
- W3037659411 hasConcept C171146098 @default.
- W3037659411 hasConcept C177148314 @default.
- W3037659411 hasConcept C17744445 @default.
- W3037659411 hasConcept C199539241 @default.
- W3037659411 hasConcept C200601418 @default.
- W3037659411 hasConcept C202444582 @default.
- W3037659411 hasConcept C2776359362 @default.
- W3037659411 hasConcept C2776401178 @default.
- W3037659411 hasConcept C33923547 @default.
- W3037659411 hasConcept C36503486 @default.
- W3037659411 hasConcept C41008148 @default.
- W3037659411 hasConcept C41895202 @default.
- W3037659411 hasConcept C94625758 @default.
- W3037659411 hasConcept C9652623 @default.
- W3037659411 hasConceptScore W3037659411C105339364 @default.
- W3037659411 hasConceptScore W3037659411C110050840 @default.
- W3037659411 hasConceptScore W3037659411C111919701 @default.
- W3037659411 hasConceptScore W3037659411C119857082 @default.
- W3037659411 hasConceptScore W3037659411C124101348 @default.
- W3037659411 hasConceptScore W3037659411C127413603 @default.
- W3037659411 hasConceptScore W3037659411C129364497 @default.
- W3037659411 hasConceptScore W3037659411C134306372 @default.
- W3037659411 hasConceptScore W3037659411C138885662 @default.
- W3037659411 hasConceptScore W3037659411C150899416 @default.
- W3037659411 hasConceptScore W3037659411C154945302 @default.
- W3037659411 hasConceptScore W3037659411C171146098 @default.
- W3037659411 hasConceptScore W3037659411C177148314 @default.
- W3037659411 hasConceptScore W3037659411C17744445 @default.
- W3037659411 hasConceptScore W3037659411C199539241 @default.