Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037677632> ?p ?o ?g. }
- W3037677632 endingPage "7496" @default.
- W3037677632 startingPage "7487" @default.
- W3037677632 abstract "Abstract Conservation and population management decisions often rely on population models parameterized using census data. However, the sampling regime, precision, sample size, and methods used to collect census data are usually heterogeneous in time and space. Decisions about how to derive population‐wide estimates from this patchwork of data are complicated and may bias estimated population dynamics, with important implications for subsequent management decisions. Here, we explore the impact of site selection and data aggregation decisions on pup survival estimates, and downstream estimates derived from parameterized matrix population models (MPMs), using a long‐term dataset on grey seal ( Halichoerus grypus ) pup survival from southwestern Wales. The spatiotemporal and methodological heterogeneity of the data are fairly typical for ecological census data and it is, therefore, a good model to address this topic. Data were collected from 46 sampling locations (sites) over 25 years, and we explore the impact of data handling decisions by varying how years and sampling locations are combined to parameterize pup survival in population‐level MPMs. We focus on pup survival because abundant high‐quality data are available on this developmental stage. We found that survival probability was highly variable with most variation being at the site level, and poorly correlated among sampling sites. This variation could generate marked differences in predicted population dynamics depending on sampling strategy. The sample size required for a confident survival estimate also varied markedly geographically. We conclude that for populations with highly variable vital rates among sub‐populations, site selection and data aggregation methods are important. In particular, including peripheral or less frequently used areas can introduce substantial variation into population estimates. This is likely to be context‐dependent, but these choices, including the use of appropriate weights when summarizing across sampling areas, should be explored to ensure that management actions are successful." @default.
- W3037677632 created "2020-07-02" @default.
- W3037677632 creator A5016277099 @default.
- W3037677632 creator A5017447481 @default.
- W3037677632 creator A5020480459 @default.
- W3037677632 creator A5024796223 @default.
- W3037677632 creator A5042587097 @default.
- W3037677632 creator A5076385884 @default.
- W3037677632 creator A5077306226 @default.
- W3037677632 date "2020-06-25" @default.
- W3037677632 modified "2023-09-27" @default.
- W3037677632 title "Census data aggregation decisions can affect population‐level inference in heterogeneous populations" @default.
- W3037677632 cites W1540137328 @default.
- W3037677632 cites W1650349952 @default.
- W3037677632 cites W1895258176 @default.
- W3037677632 cites W1940805691 @default.
- W3037677632 cites W1956218500 @default.
- W3037677632 cites W1977738557 @default.
- W3037677632 cites W1978745018 @default.
- W3037677632 cites W1991080214 @default.
- W3037677632 cites W1993262630 @default.
- W3037677632 cites W2003433614 @default.
- W3037677632 cites W2051875631 @default.
- W3037677632 cites W2057726542 @default.
- W3037677632 cites W2067505745 @default.
- W3037677632 cites W2124565737 @default.
- W3037677632 cites W2128731974 @default.
- W3037677632 cites W2139412171 @default.
- W3037677632 cites W2152986536 @default.
- W3037677632 cites W2163501399 @default.
- W3037677632 cites W2320605314 @default.
- W3037677632 cites W2327215855 @default.
- W3037677632 cites W2472420705 @default.
- W3037677632 cites W2518666896 @default.
- W3037677632 cites W2551265137 @default.
- W3037677632 cites W2562212536 @default.
- W3037677632 cites W2972179165 @default.
- W3037677632 cites W4248884888 @default.
- W3037677632 doi "https://doi.org/10.1002/ece3.6475" @default.
- W3037677632 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7391327" @default.
- W3037677632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32760543" @default.
- W3037677632 hasPublicationYear "2020" @default.
- W3037677632 type Work @default.
- W3037677632 sameAs 3037677632 @default.
- W3037677632 citedByCount "6" @default.
- W3037677632 countsByYear W30376776322021 @default.
- W3037677632 countsByYear W30376776322022 @default.
- W3037677632 crossrefType "journal-article" @default.
- W3037677632 hasAuthorship W3037677632A5016277099 @default.
- W3037677632 hasAuthorship W3037677632A5017447481 @default.
- W3037677632 hasAuthorship W3037677632A5020480459 @default.
- W3037677632 hasAuthorship W3037677632A5024796223 @default.
- W3037677632 hasAuthorship W3037677632A5042587097 @default.
- W3037677632 hasAuthorship W3037677632A5076385884 @default.
- W3037677632 hasAuthorship W3037677632A5077306226 @default.
- W3037677632 hasBestOaLocation W30376776321 @default.
- W3037677632 hasConcept C105795698 @default.
- W3037677632 hasConcept C106131492 @default.
- W3037677632 hasConcept C140779682 @default.
- W3037677632 hasConcept C144024400 @default.
- W3037677632 hasConcept C149782125 @default.
- W3037677632 hasConcept C149923435 @default.
- W3037677632 hasConcept C154945302 @default.
- W3037677632 hasConcept C169733012 @default.
- W3037677632 hasConcept C185592680 @default.
- W3037677632 hasConcept C198531522 @default.
- W3037677632 hasConcept C205649164 @default.
- W3037677632 hasConcept C2776214188 @default.
- W3037677632 hasConcept C2780507753 @default.
- W3037677632 hasConcept C2908647359 @default.
- W3037677632 hasConcept C31972630 @default.
- W3037677632 hasConcept C33923547 @default.
- W3037677632 hasConcept C36528806 @default.
- W3037677632 hasConcept C41008148 @default.
- W3037677632 hasConcept C43617362 @default.
- W3037677632 hasConcept C52130261 @default.
- W3037677632 hasConcept C75373757 @default.
- W3037677632 hasConcept C77352025 @default.
- W3037677632 hasConcept C81917197 @default.
- W3037677632 hasConceptScore W3037677632C105795698 @default.
- W3037677632 hasConceptScore W3037677632C106131492 @default.
- W3037677632 hasConceptScore W3037677632C140779682 @default.
- W3037677632 hasConceptScore W3037677632C144024400 @default.
- W3037677632 hasConceptScore W3037677632C149782125 @default.
- W3037677632 hasConceptScore W3037677632C149923435 @default.
- W3037677632 hasConceptScore W3037677632C154945302 @default.
- W3037677632 hasConceptScore W3037677632C169733012 @default.
- W3037677632 hasConceptScore W3037677632C185592680 @default.
- W3037677632 hasConceptScore W3037677632C198531522 @default.
- W3037677632 hasConceptScore W3037677632C205649164 @default.
- W3037677632 hasConceptScore W3037677632C2776214188 @default.
- W3037677632 hasConceptScore W3037677632C2780507753 @default.
- W3037677632 hasConceptScore W3037677632C2908647359 @default.
- W3037677632 hasConceptScore W3037677632C31972630 @default.
- W3037677632 hasConceptScore W3037677632C33923547 @default.
- W3037677632 hasConceptScore W3037677632C36528806 @default.
- W3037677632 hasConceptScore W3037677632C41008148 @default.
- W3037677632 hasConceptScore W3037677632C43617362 @default.