Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037695419> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3037695419 endingPage "2752" @default.
- W3037695419 startingPage "2742" @default.
- W3037695419 abstract "Conventional machine learning algorithms cannot be applied until a data matrix is available to process. When the data matrix needs to be obtained from a relational database via a feature extraction query, the computation cost can be prohibitive, as the data matrix may be (much) larger than the total input relation size. This paper introduces Rk-means, or relational k -means algorithm, for clustering relational data tuples without having to access the full data matrix. As such, we avoid having to run the expensive feature extraction query and storing its output. Our algorithm leverages the underlying structures in relational data. It involves construction of a small {it grid coreset} of the data matrix for subsequent cluster construction. This gives a constant approximation for the k -means objective, while having asymptotic runtime improvements over standard approaches of first running the database query and then clustering. Empirical results show orders-of-magnitude speedup, and Rk-means can run faster on the database than even just computing the data matrix." @default.
- W3037695419 created "2020-07-02" @default.
- W3037695419 creator A5026833192 @default.
- W3037695419 creator A5028481269 @default.
- W3037695419 creator A5035180920 @default.
- W3037695419 creator A5044201440 @default.
- W3037695419 creator A5059234529 @default.
- W3037695419 creator A5062573204 @default.
- W3037695419 date "2019-10-01" @default.
- W3037695419 modified "2023-09-22" @default.
- W3037695419 title "Rk-means: Fast Clustering for Relational Data" @default.
- W3037695419 hasPublicationYear "2019" @default.
- W3037695419 type Work @default.
- W3037695419 sameAs 3037695419 @default.
- W3037695419 citedByCount "3" @default.
- W3037695419 countsByYear W30376954192020 @default.
- W3037695419 countsByYear W30376954192021 @default.
- W3037695419 crossrefType "proceedings-article" @default.
- W3037695419 hasAuthorship W3037695419A5026833192 @default.
- W3037695419 hasAuthorship W3037695419A5028481269 @default.
- W3037695419 hasAuthorship W3037695419A5035180920 @default.
- W3037695419 hasAuthorship W3037695419A5044201440 @default.
- W3037695419 hasAuthorship W3037695419A5059234529 @default.
- W3037695419 hasAuthorship W3037695419A5062573204 @default.
- W3037695419 hasConcept C11413529 @default.
- W3037695419 hasConcept C118615104 @default.
- W3037695419 hasConcept C118930307 @default.
- W3037695419 hasConcept C124101348 @default.
- W3037695419 hasConcept C154945302 @default.
- W3037695419 hasConcept C173608175 @default.
- W3037695419 hasConcept C24394798 @default.
- W3037695419 hasConcept C33923547 @default.
- W3037695419 hasConcept C41008148 @default.
- W3037695419 hasConcept C5655090 @default.
- W3037695419 hasConcept C68339613 @default.
- W3037695419 hasConcept C73555534 @default.
- W3037695419 hasConcept C80444323 @default.
- W3037695419 hasConceptScore W3037695419C11413529 @default.
- W3037695419 hasConceptScore W3037695419C118615104 @default.
- W3037695419 hasConceptScore W3037695419C118930307 @default.
- W3037695419 hasConceptScore W3037695419C124101348 @default.
- W3037695419 hasConceptScore W3037695419C154945302 @default.
- W3037695419 hasConceptScore W3037695419C173608175 @default.
- W3037695419 hasConceptScore W3037695419C24394798 @default.
- W3037695419 hasConceptScore W3037695419C33923547 @default.
- W3037695419 hasConceptScore W3037695419C41008148 @default.
- W3037695419 hasConceptScore W3037695419C5655090 @default.
- W3037695419 hasConceptScore W3037695419C68339613 @default.
- W3037695419 hasConceptScore W3037695419C73555534 @default.
- W3037695419 hasConceptScore W3037695419C80444323 @default.
- W3037695419 hasLocation W30376954191 @default.
- W3037695419 hasOpenAccess W3037695419 @default.
- W3037695419 hasPrimaryLocation W30376954191 @default.
- W3037695419 hasRelatedWork W1991154551 @default.
- W3037695419 hasRelatedWork W2001280717 @default.
- W3037695419 hasRelatedWork W2032840619 @default.
- W3037695419 hasRelatedWork W2035619033 @default.
- W3037695419 hasRelatedWork W2080127075 @default.
- W3037695419 hasRelatedWork W2080461640 @default.
- W3037695419 hasRelatedWork W2081361155 @default.
- W3037695419 hasRelatedWork W2142669732 @default.
- W3037695419 hasRelatedWork W2144405306 @default.
- W3037695419 hasRelatedWork W2153246527 @default.
- W3037695419 hasRelatedWork W2285329326 @default.
- W3037695419 hasRelatedWork W2548991892 @default.
- W3037695419 hasRelatedWork W2735481939 @default.
- W3037695419 hasRelatedWork W2740817677 @default.
- W3037695419 hasRelatedWork W2980013140 @default.
- W3037695419 hasRelatedWork W2980652151 @default.
- W3037695419 hasRelatedWork W3023682571 @default.
- W3037695419 hasRelatedWork W3081786030 @default.
- W3037695419 hasRelatedWork W3099070662 @default.
- W3037695419 hasRelatedWork W3186989076 @default.
- W3037695419 isParatext "false" @default.
- W3037695419 isRetracted "false" @default.
- W3037695419 magId "3037695419" @default.
- W3037695419 workType "article" @default.