Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037761306> ?p ?o ?g. }
- W3037761306 abstract "Among the causes of death in the world, breast cancer is considered the most common cause of mortality among women to the extent that one in five deaths among women is attributed to the incidence of this cancer. In this paper, we introduce a computer-aided detection approach to multiple classifications of breast masses. We tried to separate and intelligently recognize different masses in the breast cancer by means of mammograms so that in the first step, with the pre-processing, pectoral region is segmented from other parts and different areas are primarily clustered by K-means method. In the next step, using aggregation of efficient features such as texture features, Pseudo–Zernike moments, and wavelet features will be extracted from the input image and simulated annealing algorithm will reduce the size of feature vector. The final step will be the classification of possible masses in mammogram and the assessment of its severity based on memetic meta-heuristic adaptive neuro-based fuzzy inference system in which the optimizer is shuffled frog-leaping algorithm. The proposed method is evaluated using 322 mammogram images taken from Mini-MIAS database, which contain a variety of possible masses in mammograms. We compare our model with similar algorithms and several state-of-the-art methods through a comprehensive set of experiments. In this approach, the focus is on providing a hybrid algorithm for accurate detection and extraction of masses in mammography, with the approach that the physician can predict both the potential disease stage and type of tumor." @default.
- W3037761306 created "2020-07-02" @default.
- W3037761306 creator A5038465361 @default.
- W3037761306 creator A5074745984 @default.
- W3037761306 creator A5086600590 @default.
- W3037761306 creator A5089588797 @default.
- W3037761306 date "2020-06-27" @default.
- W3037761306 modified "2023-10-12" @default.
- W3037761306 title "Multi-mass breast cancer classification based on hybrid descriptors and memetic meta-heuristic learning" @default.
- W3037761306 cites W1555197600 @default.
- W3037761306 cites W1557749022 @default.
- W3037761306 cites W1596088102 @default.
- W3037761306 cites W1757407923 @default.
- W3037761306 cites W1860091741 @default.
- W3037761306 cites W1972269696 @default.
- W3037761306 cites W1973235766 @default.
- W3037761306 cites W1978167298 @default.
- W3037761306 cites W1978639885 @default.
- W3037761306 cites W1980374640 @default.
- W3037761306 cites W1992608033 @default.
- W3037761306 cites W2000975802 @default.
- W3037761306 cites W2038342526 @default.
- W3037761306 cites W2039206866 @default.
- W3037761306 cites W2042479912 @default.
- W3037761306 cites W2044381109 @default.
- W3037761306 cites W2050650098 @default.
- W3037761306 cites W2050997943 @default.
- W3037761306 cites W2055783626 @default.
- W3037761306 cites W2069914810 @default.
- W3037761306 cites W2070644180 @default.
- W3037761306 cites W2071690793 @default.
- W3037761306 cites W2071898304 @default.
- W3037761306 cites W2076771159 @default.
- W3037761306 cites W2098515641 @default.
- W3037761306 cites W2099540495 @default.
- W3037761306 cites W2101771332 @default.
- W3037761306 cites W2104354422 @default.
- W3037761306 cites W2112314993 @default.
- W3037761306 cites W2119061066 @default.
- W3037761306 cites W2128279908 @default.
- W3037761306 cites W2128976645 @default.
- W3037761306 cites W2131062842 @default.
- W3037761306 cites W2131559875 @default.
- W3037761306 cites W2133857435 @default.
- W3037761306 cites W2153982164 @default.
- W3037761306 cites W2161167536 @default.
- W3037761306 cites W2164532910 @default.
- W3037761306 cites W2165271428 @default.
- W3037761306 cites W2167101736 @default.
- W3037761306 cites W2172359919 @default.
- W3037761306 cites W2219446152 @default.
- W3037761306 cites W2274668089 @default.
- W3037761306 cites W2318624065 @default.
- W3037761306 cites W2327362588 @default.
- W3037761306 cites W2345524222 @default.
- W3037761306 cites W2481324571 @default.
- W3037761306 cites W2493683088 @default.
- W3037761306 cites W2592060032 @default.
- W3037761306 cites W2889512114 @default.
- W3037761306 cites W2902910125 @default.
- W3037761306 cites W2909240409 @default.
- W3037761306 cites W2911188335 @default.
- W3037761306 cites W2928842276 @default.
- W3037761306 cites W3010419441 @default.
- W3037761306 doi "https://doi.org/10.1007/s42452-020-3103-7" @default.
- W3037761306 hasPublicationYear "2020" @default.
- W3037761306 type Work @default.
- W3037761306 sameAs 3037761306 @default.
- W3037761306 citedByCount "8" @default.
- W3037761306 countsByYear W30377613062021 @default.
- W3037761306 countsByYear W30377613062022 @default.
- W3037761306 crossrefType "journal-article" @default.
- W3037761306 hasAuthorship W3037761306A5038465361 @default.
- W3037761306 hasAuthorship W3037761306A5074745984 @default.
- W3037761306 hasAuthorship W3037761306A5086600590 @default.
- W3037761306 hasAuthorship W3037761306A5089588797 @default.
- W3037761306 hasBestOaLocation W30377613061 @default.
- W3037761306 hasConcept C119857082 @default.
- W3037761306 hasConcept C121608353 @default.
- W3037761306 hasConcept C126322002 @default.
- W3037761306 hasConcept C126980161 @default.
- W3037761306 hasConcept C153180895 @default.
- W3037761306 hasConcept C154945302 @default.
- W3037761306 hasConcept C2780472235 @default.
- W3037761306 hasConcept C41008148 @default.
- W3037761306 hasConcept C47432892 @default.
- W3037761306 hasConcept C52622490 @default.
- W3037761306 hasConcept C530470458 @default.
- W3037761306 hasConcept C71924100 @default.
- W3037761306 hasConceptScore W3037761306C119857082 @default.
- W3037761306 hasConceptScore W3037761306C121608353 @default.
- W3037761306 hasConceptScore W3037761306C126322002 @default.
- W3037761306 hasConceptScore W3037761306C126980161 @default.
- W3037761306 hasConceptScore W3037761306C153180895 @default.
- W3037761306 hasConceptScore W3037761306C154945302 @default.
- W3037761306 hasConceptScore W3037761306C2780472235 @default.
- W3037761306 hasConceptScore W3037761306C41008148 @default.
- W3037761306 hasConceptScore W3037761306C47432892 @default.
- W3037761306 hasConceptScore W3037761306C52622490 @default.
- W3037761306 hasConceptScore W3037761306C530470458 @default.