Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037763148> ?p ?o ?g. }
- W3037763148 abstract "ABSTRACT Diffuse correlation spectroscopy (DCS) is increasingly used in the optical imaging field to assess blood flow in humans due to its non-invasive, real-time characteristics and its ability to provide label-free, bedside monitoring of blood flow changes. Previous DCS studies have utilized a traditional curve fitting of the analytical or Monte Carlo models to extract the blood flow changes, which are computationally demanding and less accurate when the signal to noise ratio decreases. Here, we present a deep learning model that eliminates this bottleneck by solving the inverse problem more than 2300% faster, with equivalent or improved accuracy compared to the nonlinear fitting with an analytical method. The proposed deep learning inverse model will enable real-time and accurate tissue blood flow quantification with the DCS technique." @default.
- W3037763148 created "2020-07-02" @default.
- W3037763148 creator A5004889484 @default.
- W3037763148 creator A5058499811 @default.
- W3037763148 creator A5065123747 @default.
- W3037763148 date "2020-06-24" @default.
- W3037763148 modified "2023-09-23" @default.
- W3037763148 title "Deep learning model for ultrafast quantification of blood flow in diffuse correlation spectroscopy" @default.
- W3037763148 cites W1999893222 @default.
- W3037763148 cites W2042534989 @default.
- W3037763148 cites W2059383011 @default.
- W3037763148 cites W2061135416 @default.
- W3037763148 cites W2073494245 @default.
- W3037763148 cites W2080121992 @default.
- W3037763148 cites W2104429735 @default.
- W3037763148 cites W2109064735 @default.
- W3037763148 cites W2129154930 @default.
- W3037763148 cites W2133404950 @default.
- W3037763148 cites W2169839733 @default.
- W3037763148 cites W2294281604 @default.
- W3037763148 cites W2401505168 @default.
- W3037763148 cites W2587801673 @default.
- W3037763148 cites W2734775821 @default.
- W3037763148 cites W2891916942 @default.
- W3037763148 cites W2901482670 @default.
- W3037763148 cites W2909598879 @default.
- W3037763148 cites W2919115771 @default.
- W3037763148 cites W2919354217 @default.
- W3037763148 cites W2960026766 @default.
- W3037763148 cites W2963163009 @default.
- W3037763148 cites W2972391308 @default.
- W3037763148 cites W2976222442 @default.
- W3037763148 cites W2991344754 @default.
- W3037763148 cites W3031827351 @default.
- W3037763148 doi "https://doi.org/10.1101/2020.06.24.167882" @default.
- W3037763148 hasPublicationYear "2020" @default.
- W3037763148 type Work @default.
- W3037763148 sameAs 3037763148 @default.
- W3037763148 citedByCount "1" @default.
- W3037763148 countsByYear W30377631482021 @default.
- W3037763148 crossrefType "posted-content" @default.
- W3037763148 hasAuthorship W3037763148A5004889484 @default.
- W3037763148 hasAuthorship W3037763148A5058499811 @default.
- W3037763148 hasAuthorship W3037763148A5065123747 @default.
- W3037763148 hasBestOaLocation W30377631481 @default.
- W3037763148 hasConcept C105795698 @default.
- W3037763148 hasConcept C108583219 @default.
- W3037763148 hasConcept C11413529 @default.
- W3037763148 hasConcept C121332964 @default.
- W3037763148 hasConcept C126838900 @default.
- W3037763148 hasConcept C134306372 @default.
- W3037763148 hasConcept C135252773 @default.
- W3037763148 hasConcept C149635348 @default.
- W3037763148 hasConcept C154945302 @default.
- W3037763148 hasConcept C158622935 @default.
- W3037763148 hasConcept C158846371 @default.
- W3037763148 hasConcept C186060115 @default.
- W3037763148 hasConcept C19499675 @default.
- W3037763148 hasConcept C202444582 @default.
- W3037763148 hasConcept C207467116 @default.
- W3037763148 hasConcept C2524010 @default.
- W3037763148 hasConcept C2780513914 @default.
- W3037763148 hasConcept C33923547 @default.
- W3037763148 hasConcept C38349280 @default.
- W3037763148 hasConcept C41008148 @default.
- W3037763148 hasConcept C57879066 @default.
- W3037763148 hasConcept C62520636 @default.
- W3037763148 hasConcept C71924100 @default.
- W3037763148 hasConcept C86803240 @default.
- W3037763148 hasConcept C9652623 @default.
- W3037763148 hasConceptScore W3037763148C105795698 @default.
- W3037763148 hasConceptScore W3037763148C108583219 @default.
- W3037763148 hasConceptScore W3037763148C11413529 @default.
- W3037763148 hasConceptScore W3037763148C121332964 @default.
- W3037763148 hasConceptScore W3037763148C126838900 @default.
- W3037763148 hasConceptScore W3037763148C134306372 @default.
- W3037763148 hasConceptScore W3037763148C135252773 @default.
- W3037763148 hasConceptScore W3037763148C149635348 @default.
- W3037763148 hasConceptScore W3037763148C154945302 @default.
- W3037763148 hasConceptScore W3037763148C158622935 @default.
- W3037763148 hasConceptScore W3037763148C158846371 @default.
- W3037763148 hasConceptScore W3037763148C186060115 @default.
- W3037763148 hasConceptScore W3037763148C19499675 @default.
- W3037763148 hasConceptScore W3037763148C202444582 @default.
- W3037763148 hasConceptScore W3037763148C207467116 @default.
- W3037763148 hasConceptScore W3037763148C2524010 @default.
- W3037763148 hasConceptScore W3037763148C2780513914 @default.
- W3037763148 hasConceptScore W3037763148C33923547 @default.
- W3037763148 hasConceptScore W3037763148C38349280 @default.
- W3037763148 hasConceptScore W3037763148C41008148 @default.
- W3037763148 hasConceptScore W3037763148C57879066 @default.
- W3037763148 hasConceptScore W3037763148C62520636 @default.
- W3037763148 hasConceptScore W3037763148C71924100 @default.
- W3037763148 hasConceptScore W3037763148C86803240 @default.
- W3037763148 hasConceptScore W3037763148C9652623 @default.
- W3037763148 hasLocation W30377631481 @default.
- W3037763148 hasLocation W30377631482 @default.
- W3037763148 hasOpenAccess W3037763148 @default.
- W3037763148 hasPrimaryLocation W30377631481 @default.
- W3037763148 hasRelatedWork W12539047 @default.