Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037789657> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3037789657 endingPage "012002" @default.
- W3037789657 startingPage "012002" @default.
- W3037789657 abstract "A partial differential equation is an equation which includes derivatives of an unknown function with respect to two or more independent variables. The analytical solution is needed to obtain the exact solution of partial differential equation. To solve these partial differential equations, the appropriate boundary and initial conditions are needed. The general solution is dependent not only on the equation, but also on the boundary conditions. In other words, these partial differential equations will have different general solution when paired with different sets of boundary conditions. In the present study, the homogeneous one-dimensional heat equation will be solved analytically by using separation of variables method. Our main objective is to determine the general and specific solution of heat equation based on analytical solution. To verify our objective, the heat equation will be solved based on the different functions of initial conditions on Neumann boundary conditions. The results have been compared with different values of initial conditions but the boundary condition remain the same. Based on the results obtained, it can be concluded that increase the number of n will reduce the heat temperature and the time taken. For short length of the rod, the heat temperature quickly converges to zero and take less time to release or reduced the heat temperature when compared to the long length of the rod." @default.
- W3037789657 created "2020-07-02" @default.
- W3037789657 creator A5059616831 @default.
- W3037789657 creator A5061034409 @default.
- W3037789657 creator A5065935703 @default.
- W3037789657 creator A5075958674 @default.
- W3037789657 date "2020-05-01" @default.
- W3037789657 modified "2023-09-26" @default.
- W3037789657 title "Analytical Solution of Homogeneous One-Dimensional Heat Equation with Neumann Boundary Conditions" @default.
- W3037789657 cites W1919424658 @default.
- W3037789657 cites W2137862468 @default.
- W3037789657 cites W2260648493 @default.
- W3037789657 cites W2264932143 @default.
- W3037789657 cites W2787559546 @default.
- W3037789657 doi "https://doi.org/10.1088/1742-6596/1551/1/012002" @default.
- W3037789657 hasPublicationYear "2020" @default.
- W3037789657 type Work @default.
- W3037789657 sameAs 3037789657 @default.
- W3037789657 citedByCount "0" @default.
- W3037789657 crossrefType "journal-article" @default.
- W3037789657 hasAuthorship W3037789657A5059616831 @default.
- W3037789657 hasAuthorship W3037789657A5061034409 @default.
- W3037789657 hasAuthorship W3037789657A5065935703 @default.
- W3037789657 hasAuthorship W3037789657A5075958674 @default.
- W3037789657 hasBestOaLocation W30377896571 @default.
- W3037789657 hasConcept C106947605 @default.
- W3037789657 hasConcept C108257041 @default.
- W3037789657 hasConcept C134306372 @default.
- W3037789657 hasConcept C154416045 @default.
- W3037789657 hasConcept C159722891 @default.
- W3037789657 hasConcept C163681178 @default.
- W3037789657 hasConcept C182310444 @default.
- W3037789657 hasConcept C186219872 @default.
- W3037789657 hasConcept C186867907 @default.
- W3037789657 hasConcept C202787564 @default.
- W3037789657 hasConcept C22219631 @default.
- W3037789657 hasConcept C33923547 @default.
- W3037789657 hasConcept C42045870 @default.
- W3037789657 hasConcept C51544822 @default.
- W3037789657 hasConcept C54067925 @default.
- W3037789657 hasConcept C64057670 @default.
- W3037789657 hasConcept C65826597 @default.
- W3037789657 hasConcept C78045399 @default.
- W3037789657 hasConcept C93779851 @default.
- W3037789657 hasConceptScore W3037789657C106947605 @default.
- W3037789657 hasConceptScore W3037789657C108257041 @default.
- W3037789657 hasConceptScore W3037789657C134306372 @default.
- W3037789657 hasConceptScore W3037789657C154416045 @default.
- W3037789657 hasConceptScore W3037789657C159722891 @default.
- W3037789657 hasConceptScore W3037789657C163681178 @default.
- W3037789657 hasConceptScore W3037789657C182310444 @default.
- W3037789657 hasConceptScore W3037789657C186219872 @default.
- W3037789657 hasConceptScore W3037789657C186867907 @default.
- W3037789657 hasConceptScore W3037789657C202787564 @default.
- W3037789657 hasConceptScore W3037789657C22219631 @default.
- W3037789657 hasConceptScore W3037789657C33923547 @default.
- W3037789657 hasConceptScore W3037789657C42045870 @default.
- W3037789657 hasConceptScore W3037789657C51544822 @default.
- W3037789657 hasConceptScore W3037789657C54067925 @default.
- W3037789657 hasConceptScore W3037789657C64057670 @default.
- W3037789657 hasConceptScore W3037789657C65826597 @default.
- W3037789657 hasConceptScore W3037789657C78045399 @default.
- W3037789657 hasConceptScore W3037789657C93779851 @default.
- W3037789657 hasLocation W30377896571 @default.
- W3037789657 hasOpenAccess W3037789657 @default.
- W3037789657 hasPrimaryLocation W30377896571 @default.
- W3037789657 hasRelatedWork W1974604747 @default.
- W3037789657 hasRelatedWork W2056589857 @default.
- W3037789657 hasRelatedWork W2059766049 @default.
- W3037789657 hasRelatedWork W2077498560 @default.
- W3037789657 hasRelatedWork W2391728355 @default.
- W3037789657 hasRelatedWork W2756384272 @default.
- W3037789657 hasRelatedWork W3037789657 @default.
- W3037789657 hasRelatedWork W3155098563 @default.
- W3037789657 hasRelatedWork W3176773890 @default.
- W3037789657 hasRelatedWork W2188412475 @default.
- W3037789657 hasVolume "1551" @default.
- W3037789657 isParatext "false" @default.
- W3037789657 isRetracted "false" @default.
- W3037789657 magId "3037789657" @default.
- W3037789657 workType "article" @default.