Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037823248> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3037823248 abstract "Time series modeling and analysis provides means of predicting the future and has been widely used in a variety of fields ranging from seismology for predicting earthquake and volcanic eruption, to finance for risk assessment, and to quantum information processing. The conventional integer order models can only capture short-range dependence; for example, Poisson processes, Markov processes, autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) processes. In time series analysis, one of the conventional assumptions is that the coupling between values at different time instants decreases rapidly as the time difference or distance increases. However, there are situations where strong coupling between values at different times exhibit properties of long range dependence which cannot be processed by the conventional time series analysis. Typical examples of long range dependence signals include financial time series, underwater noise, electroencephalography (EEG) signal, etc. ARFIMA, a fractional order signal processing technique, is the generalization of the conventional integer order techniques, namely, ARIMA and ARMA methods. Hence, it is capable of capturing both short-range dependence and long-range dependence in signals. Compared to conventional integer order models, the ARFIMA model gives a better fit and result when dealing with the data which possess the long range dependence property. In this paper, we investigate the application of the ARFIMA as well as AR methods to model EEG signals obtained from different brain channels. We analyze the resulting correlations for comparison the benefits of ARFIMA over AR on the EEG data exhibiting the long range dependency property. The results showed that the prediction results have a better performance compared to the conventional ARMA models." @default.
- W3037823248 created "2020-07-02" @default.
- W3037823248 creator A5006345148 @default.
- W3037823248 creator A5009905691 @default.
- W3037823248 creator A5075400455 @default.
- W3037823248 date "2020-06-28" @default.
- W3037823248 modified "2023-09-27" @default.
- W3037823248 title "Fractional Order Modeling of Brain Signals" @default.
- W3037823248 cites W1970981493 @default.
- W3037823248 cites W2026971936 @default.
- W3037823248 cites W2100894341 @default.
- W3037823248 cites W2147187023 @default.
- W3037823248 cites W2313953460 @default.
- W3037823248 cites W2338714606 @default.
- W3037823248 cites W4242671632 @default.
- W3037823248 doi "https://doi.org/10.1007/978-3-030-51041-1_2" @default.
- W3037823248 hasPublicationYear "2020" @default.
- W3037823248 type Work @default.
- W3037823248 sameAs 3037823248 @default.
- W3037823248 citedByCount "2" @default.
- W3037823248 countsByYear W30378232482020 @default.
- W3037823248 countsByYear W30378232482021 @default.
- W3037823248 crossrefType "book-chapter" @default.
- W3037823248 hasAuthorship W3037823248A5006345148 @default.
- W3037823248 hasAuthorship W3037823248A5009905691 @default.
- W3037823248 hasAuthorship W3037823248A5075400455 @default.
- W3037823248 hasConcept C105795698 @default.
- W3037823248 hasConcept C11413529 @default.
- W3037823248 hasConcept C121332964 @default.
- W3037823248 hasConcept C121864883 @default.
- W3037823248 hasConcept C127413603 @default.
- W3037823248 hasConcept C1297061 @default.
- W3037823248 hasConcept C143724316 @default.
- W3037823248 hasConcept C146978453 @default.
- W3037823248 hasConcept C149782125 @default.
- W3037823248 hasConcept C151406439 @default.
- W3037823248 hasConcept C151730666 @default.
- W3037823248 hasConcept C159877910 @default.
- W3037823248 hasConcept C175706884 @default.
- W3037823248 hasConcept C204323151 @default.
- W3037823248 hasConcept C24338571 @default.
- W3037823248 hasConcept C28826006 @default.
- W3037823248 hasConcept C2986394398 @default.
- W3037823248 hasConcept C33923547 @default.
- W3037823248 hasConcept C41008148 @default.
- W3037823248 hasConcept C74883015 @default.
- W3037823248 hasConcept C86803240 @default.
- W3037823248 hasConcept C91602232 @default.
- W3037823248 hasConceptScore W3037823248C105795698 @default.
- W3037823248 hasConceptScore W3037823248C11413529 @default.
- W3037823248 hasConceptScore W3037823248C121332964 @default.
- W3037823248 hasConceptScore W3037823248C121864883 @default.
- W3037823248 hasConceptScore W3037823248C127413603 @default.
- W3037823248 hasConceptScore W3037823248C1297061 @default.
- W3037823248 hasConceptScore W3037823248C143724316 @default.
- W3037823248 hasConceptScore W3037823248C146978453 @default.
- W3037823248 hasConceptScore W3037823248C149782125 @default.
- W3037823248 hasConceptScore W3037823248C151406439 @default.
- W3037823248 hasConceptScore W3037823248C151730666 @default.
- W3037823248 hasConceptScore W3037823248C159877910 @default.
- W3037823248 hasConceptScore W3037823248C175706884 @default.
- W3037823248 hasConceptScore W3037823248C204323151 @default.
- W3037823248 hasConceptScore W3037823248C24338571 @default.
- W3037823248 hasConceptScore W3037823248C28826006 @default.
- W3037823248 hasConceptScore W3037823248C2986394398 @default.
- W3037823248 hasConceptScore W3037823248C33923547 @default.
- W3037823248 hasConceptScore W3037823248C41008148 @default.
- W3037823248 hasConceptScore W3037823248C74883015 @default.
- W3037823248 hasConceptScore W3037823248C86803240 @default.
- W3037823248 hasConceptScore W3037823248C91602232 @default.
- W3037823248 hasLocation W30378232481 @default.
- W3037823248 hasOpenAccess W3037823248 @default.
- W3037823248 hasPrimaryLocation W30378232481 @default.
- W3037823248 hasRelatedWork W1086135 @default.
- W3037823248 hasRelatedWork W241917 @default.
- W3037823248 hasRelatedWork W4414904 @default.
- W3037823248 hasRelatedWork W5686477 @default.
- W3037823248 hasRelatedWork W6156524 @default.
- W3037823248 hasRelatedWork W683848 @default.
- W3037823248 hasRelatedWork W6977423 @default.
- W3037823248 hasRelatedWork W7096435 @default.
- W3037823248 hasRelatedWork W8098291 @default.
- W3037823248 hasRelatedWork W9477434 @default.
- W3037823248 isParatext "false" @default.
- W3037823248 isRetracted "false" @default.
- W3037823248 magId "3037823248" @default.
- W3037823248 workType "book-chapter" @default.