Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037835652> ?p ?o ?g. }
- W3037835652 endingPage "347" @default.
- W3037835652 startingPage "323" @default.
- W3037835652 abstract "SUMMARY The retrieval of high-frequency seismic source–time functions (STFs) of similar earthquakes tends to be an ill-posed problem, causing unstable solutions. This is particularly true when waveforms are complex and band-limited, such as the regional phase Lg. We present a new procedure implementing the multichannel deconvolution (MCD) method to retrieve robust and objective STF solutions. The procedure relies on well-developed geophysical inverse theory to obtain stable STF solutions that jointly minimize the residual misfit, model roughness and data underfitting. MCD is formulated as a least-squares inverse problem with a Tikhonov regularization. The problem is solved using a convex optimization algorithm which rapidly converges to the global minimum while accommodating physical solution constraints including positivity, causality, finiteness and known seismic moments. We construct two L-shaped curves showing how the solution residual and roughness vary with trial solution durations. The optimal damping is chosen when the curves have acceptable levels while exhibiting no oscillations caused by solution instability. The optimal solution duration is chosen to avoid a rapidly decaying segment of the residual curve caused by parameter underfitting. We apply the MCD method to synthetic Lg data constructed by convolving a real Lg waveform with five pairs of simulated STFs. Four pairs consist of single triangular or parabolic pulses. The remaining pair consists of multipulse STFs with a complex, four-spike large STF. Without noise, the larger STFs in all single-pulse cases are well-recovered with Tikhonov regularization. Shape distortions are minor and duration errors are within 5 per cent. The multipulse case is a rare well-posed problem for which the true STFs are recovered without regularization. When a noise of ∼20 per cent is added to the synthetic data, the MCD method retrieves large single-pulse STFs with minor shape distortions and small duration errors (from 0 to 18 per cent). For the multipulse case, the retrieved large STF is overly smeared, losing details in the later portion. The small STF solutions for all cases are less resilient. Finally, we apply the MCD method to Lg data from two pairs of moderate earthquakes in central Asia. The problem becomes more ill-posed owing to lower signal-to-noise ratios (as low as 3) and non-identical Green's functions. A shape constraint of the small STF is needed. For the larger events with M5.7 and 5.8, the retrieved STFs are asymmetric, rising sharply and lasting about 2.0 and 2.5 s. We estimate radiated energies of 2.47 × 1013 and 2.53 × 1013 J and apparent stresses of 1.4 and 1.9 MPa, which are very reasonable. Our results are very consistent with those obtained in a previous study that used a very different, less objective ‘Landweber deconvolution’ method and a pre-fixed small STF duration. Novel improvements made by our new procedure include the application of a convex algorithm rather than a Newton-like method, a procedure for simultaneously optimizing regularization and solution duration parameters, a shape constraint for the smaller STF, and application to the complex Lg wave." @default.
- W3037835652 created "2020-07-02" @default.
- W3037835652 creator A5063362789 @default.
- W3037835652 creator A5086446112 @default.
- W3037835652 date "2020-06-25" @default.
- W3037835652 modified "2023-10-12" @default.
- W3037835652 title "A multichannel deconvolution method to retrieve source–time functions: application to the regional Lg wave" @default.
- W3037835652 cites W1481171151 @default.
- W3037835652 cites W1548971356 @default.
- W3037835652 cites W1558136678 @default.
- W3037835652 cites W1577639472 @default.
- W3037835652 cites W1577843709 @default.
- W3037835652 cites W1945241849 @default.
- W3037835652 cites W1961427104 @default.
- W3037835652 cites W1973287273 @default.
- W3037835652 cites W1974198304 @default.
- W3037835652 cites W1984524588 @default.
- W3037835652 cites W1990097818 @default.
- W3037835652 cites W1994553199 @default.
- W3037835652 cites W1996603668 @default.
- W3037835652 cites W1997318388 @default.
- W3037835652 cites W1998762105 @default.
- W3037835652 cites W2001640355 @default.
- W3037835652 cites W2013782998 @default.
- W3037835652 cites W2015948680 @default.
- W3037835652 cites W2017274089 @default.
- W3037835652 cites W2019611228 @default.
- W3037835652 cites W2020794682 @default.
- W3037835652 cites W2021613951 @default.
- W3037835652 cites W2022678425 @default.
- W3037835652 cites W2026256395 @default.
- W3037835652 cites W2030773795 @default.
- W3037835652 cites W2032941099 @default.
- W3037835652 cites W2033633236 @default.
- W3037835652 cites W2037941857 @default.
- W3037835652 cites W2045641625 @default.
- W3037835652 cites W2045977169 @default.
- W3037835652 cites W2050001231 @default.
- W3037835652 cites W2053496294 @default.
- W3037835652 cites W2054568626 @default.
- W3037835652 cites W2058446809 @default.
- W3037835652 cites W2061466180 @default.
- W3037835652 cites W2062079911 @default.
- W3037835652 cites W2064797852 @default.
- W3037835652 cites W2070665913 @default.
- W3037835652 cites W2079488326 @default.
- W3037835652 cites W2088926784 @default.
- W3037835652 cites W2091780941 @default.
- W3037835652 cites W2095359242 @default.
- W3037835652 cites W2095519592 @default.
- W3037835652 cites W2098860376 @default.
- W3037835652 cites W2105561556 @default.
- W3037835652 cites W2106641143 @default.
- W3037835652 cites W2107466955 @default.
- W3037835652 cites W2117585132 @default.
- W3037835652 cites W2120294892 @default.
- W3037835652 cites W2121834195 @default.
- W3037835652 cites W2124331477 @default.
- W3037835652 cites W2129219040 @default.
- W3037835652 cites W2130553394 @default.
- W3037835652 cites W2134917361 @default.
- W3037835652 cites W2141100817 @default.
- W3037835652 cites W2158448702 @default.
- W3037835652 cites W2164411364 @default.
- W3037835652 cites W2165621385 @default.
- W3037835652 cites W2182579460 @default.
- W3037835652 cites W2227343038 @default.
- W3037835652 cites W2289763316 @default.
- W3037835652 cites W2292109565 @default.
- W3037835652 cites W2293926087 @default.
- W3037835652 cites W2296935872 @default.
- W3037835652 cites W2317923488 @default.
- W3037835652 cites W2339205890 @default.
- W3037835652 cites W2375528750 @default.
- W3037835652 cites W2406824187 @default.
- W3037835652 cites W2560222178 @default.
- W3037835652 cites W2591018339 @default.
- W3037835652 cites W275333229 @default.
- W3037835652 cites W2808109513 @default.
- W3037835652 cites W4205481790 @default.
- W3037835652 cites W4240109671 @default.
- W3037835652 cites W4250589301 @default.
- W3037835652 doi "https://doi.org/10.1093/gji/ggaa303" @default.
- W3037835652 hasPublicationYear "2020" @default.
- W3037835652 type Work @default.
- W3037835652 sameAs 3037835652 @default.
- W3037835652 citedByCount "0" @default.
- W3037835652 crossrefType "journal-article" @default.
- W3037835652 hasAuthorship W3037835652A5063362789 @default.
- W3037835652 hasAuthorship W3037835652A5086446112 @default.
- W3037835652 hasBestOaLocation W30378356521 @default.
- W3037835652 hasConcept C11413529 @default.
- W3037835652 hasConcept C126255220 @default.
- W3037835652 hasConcept C134306372 @default.
- W3037835652 hasConcept C135252773 @default.
- W3037835652 hasConcept C152442038 @default.
- W3037835652 hasConcept C154945302 @default.
- W3037835652 hasConcept C155512373 @default.