Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037882010> ?p ?o ?g. }
- W3037882010 endingPage "102245" @default.
- W3037882010 startingPage "102245" @default.
- W3037882010 abstract "Prostate cancer most frequently metastasizes to bone, resulting in abnormal bone metabolism and the release of components into the blood stream. Here, we evaluated the capacity of convolutional neural networks (CNNs) to use Raman data for screening of prostate cancer bone metastases. We used label-free surface-enhanced Raman spectroscopy (SERS) to collect 1281 serum Raman spectra from 427 patients with prostate cancer, and then we constructed a CNN based on LetNet-5 to recognize prostate cancer patients with bone metastases. We then used 5-fold cross-validation method to train and test the CNN model and evaluated its actual performance. Our CNN model for bone metastases detection revealed a mean training accuracy of 99.51% ± 0.23%, mean testing accuracy of 81.70% ± 2.83%, mean testing sensitivity of 80.63% ± 5.07%, and mean testing specificity of 82.82% ± 2.94%." @default.
- W3037882010 created "2020-07-02" @default.
- W3037882010 creator A5009027431 @default.
- W3037882010 creator A5013129340 @default.
- W3037882010 creator A5016243869 @default.
- W3037882010 creator A5016942534 @default.
- W3037882010 creator A5017153184 @default.
- W3037882010 creator A5025036258 @default.
- W3037882010 creator A5033614956 @default.
- W3037882010 creator A5037654523 @default.
- W3037882010 creator A5072635239 @default.
- W3037882010 creator A5073325123 @default.
- W3037882010 creator A5077353181 @default.
- W3037882010 date "2020-10-01" @default.
- W3037882010 modified "2023-10-16" @default.
- W3037882010 title "Deep convolutional neural networks combine Raman spectral signature of serum for prostate cancer bone metastases screening" @default.
- W3037882010 cites W1970345836 @default.
- W3037882010 cites W1974278505 @default.
- W3037882010 cites W1983991247 @default.
- W3037882010 cites W2010618769 @default.
- W3037882010 cites W2049613048 @default.
- W3037882010 cites W2064147938 @default.
- W3037882010 cites W2097358067 @default.
- W3037882010 cites W2097720198 @default.
- W3037882010 cites W2113701976 @default.
- W3037882010 cites W2122904975 @default.
- W3037882010 cites W2166775256 @default.
- W3037882010 cites W2272984102 @default.
- W3037882010 cites W2409798226 @default.
- W3037882010 cites W2462698678 @default.
- W3037882010 cites W2511755939 @default.
- W3037882010 cites W2563212520 @default.
- W3037882010 cites W2564339002 @default.
- W3037882010 cites W2572185142 @default.
- W3037882010 cites W2608231518 @default.
- W3037882010 cites W2739973633 @default.
- W3037882010 cites W2752532133 @default.
- W3037882010 cites W2760946358 @default.
- W3037882010 cites W2765571304 @default.
- W3037882010 cites W2770242618 @default.
- W3037882010 cites W2804844444 @default.
- W3037882010 cites W2809254203 @default.
- W3037882010 cites W2909492774 @default.
- W3037882010 cites W2910086278 @default.
- W3037882010 cites W2939928699 @default.
- W3037882010 doi "https://doi.org/10.1016/j.nano.2020.102245" @default.
- W3037882010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32592757" @default.
- W3037882010 hasPublicationYear "2020" @default.
- W3037882010 type Work @default.
- W3037882010 sameAs 3037882010 @default.
- W3037882010 citedByCount "26" @default.
- W3037882010 countsByYear W30378820102020 @default.
- W3037882010 countsByYear W30378820102021 @default.
- W3037882010 countsByYear W30378820102022 @default.
- W3037882010 countsByYear W30378820102023 @default.
- W3037882010 crossrefType "journal-article" @default.
- W3037882010 hasAuthorship W3037882010A5009027431 @default.
- W3037882010 hasAuthorship W3037882010A5013129340 @default.
- W3037882010 hasAuthorship W3037882010A5016243869 @default.
- W3037882010 hasAuthorship W3037882010A5016942534 @default.
- W3037882010 hasAuthorship W3037882010A5017153184 @default.
- W3037882010 hasAuthorship W3037882010A5025036258 @default.
- W3037882010 hasAuthorship W3037882010A5033614956 @default.
- W3037882010 hasAuthorship W3037882010A5037654523 @default.
- W3037882010 hasAuthorship W3037882010A5072635239 @default.
- W3037882010 hasAuthorship W3037882010A5073325123 @default.
- W3037882010 hasAuthorship W3037882010A5077353181 @default.
- W3037882010 hasConcept C120665830 @default.
- W3037882010 hasConcept C121332964 @default.
- W3037882010 hasConcept C121608353 @default.
- W3037882010 hasConcept C126322002 @default.
- W3037882010 hasConcept C142724271 @default.
- W3037882010 hasConcept C143998085 @default.
- W3037882010 hasConcept C154945302 @default.
- W3037882010 hasConcept C2776235491 @default.
- W3037882010 hasConcept C2780192828 @default.
- W3037882010 hasConcept C40003534 @default.
- W3037882010 hasConcept C41008148 @default.
- W3037882010 hasConcept C71924100 @default.
- W3037882010 hasConcept C81363708 @default.
- W3037882010 hasConceptScore W3037882010C120665830 @default.
- W3037882010 hasConceptScore W3037882010C121332964 @default.
- W3037882010 hasConceptScore W3037882010C121608353 @default.
- W3037882010 hasConceptScore W3037882010C126322002 @default.
- W3037882010 hasConceptScore W3037882010C142724271 @default.
- W3037882010 hasConceptScore W3037882010C143998085 @default.
- W3037882010 hasConceptScore W3037882010C154945302 @default.
- W3037882010 hasConceptScore W3037882010C2776235491 @default.
- W3037882010 hasConceptScore W3037882010C2780192828 @default.
- W3037882010 hasConceptScore W3037882010C40003534 @default.
- W3037882010 hasConceptScore W3037882010C41008148 @default.
- W3037882010 hasConceptScore W3037882010C71924100 @default.
- W3037882010 hasConceptScore W3037882010C81363708 @default.
- W3037882010 hasFunder F4320321001 @default.
- W3037882010 hasFunder F4320321881 @default.
- W3037882010 hasFunder F4320321885 @default.
- W3037882010 hasLocation W30378820101 @default.
- W3037882010 hasOpenAccess W3037882010 @default.