Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037887561> ?p ?o ?g. }
- W3037887561 endingPage "415401" @default.
- W3037887561 startingPage "415401" @default.
- W3037887561 abstract "To enhance the intrinsic electrical conductivities of TiO2(B) nanobelts, nitrogen(N)-doped TiO2(B) nanobelts (N-TNB) were prepared in this study by a facile and cost-effective hydrothermal method using urea as the nitrogen source with TiO2 (P25) nanoparticles. x-ray photoelectron spectroscopy confirmed that the N-atoms preferentially occupied up to ∼0.516 atom% in the interstitial sites of the N-TNB and the maximum concentration of substituted-N bonds in the N-TNB was ∼0.154 atom%, thereby the total concentration of doped nitrogen elements of ∼0.67 atom% improved the high intrinsic electrical conductivity and ionic diffusivity of the TiO2(B) nanobelts. The as-prepared N-TNB electrode delivered the highest specific capacity of 133.9 mAh g−1 in the first cycle, with an exceptional cyclic capacity retention at an ultrafast current rate of 1000 mA g−1; this is not less than 51% after 500 cycles and represents an excellent rate capability of ∼37 mAh g−1 at an ultra-high rate of 40 C. These values are among the best ever reported on comparison of the delivered highest discharge capacity of N-TNB at 1000 mA g−1 and high-rate capabilities of its Li+ ion storage with the literature data for N-TNB (∼231.5 mAh g−1 at a very low current density of 16.75 mA g−1, ∼0.1 C) of similar materials used in sodium-ion batteries. This implies the potential feasibility of these N-TNB as high-capacity anode materials for next-generation, high-energy-density, electrochemical energy-storage devices." @default.
- W3037887561 created "2020-07-02" @default.
- W3037887561 creator A5030401334 @default.
- W3037887561 creator A5036152156 @default.
- W3037887561 creator A5038019321 @default.
- W3037887561 date "2020-07-20" @default.
- W3037887561 modified "2023-10-06" @default.
- W3037887561 title "Nitrogen-doped TiO<sub>2</sub>(B) nanobelts enabling enhancement of electronic conductivity and efficiency of lithium-ion storage" @default.
- W3037887561 cites W1753082866 @default.
- W3037887561 cites W1776265290 @default.
- W3037887561 cites W1914883300 @default.
- W3037887561 cites W1933162421 @default.
- W3037887561 cites W1957113022 @default.
- W3037887561 cites W1980747973 @default.
- W3037887561 cites W1982339678 @default.
- W3037887561 cites W1999555026 @default.
- W3037887561 cites W2003120420 @default.
- W3037887561 cites W2013209195 @default.
- W3037887561 cites W2015387690 @default.
- W3037887561 cites W2047590561 @default.
- W3037887561 cites W2053387710 @default.
- W3037887561 cites W2056345463 @default.
- W3037887561 cites W2063074980 @default.
- W3037887561 cites W2074447771 @default.
- W3037887561 cites W2089509524 @default.
- W3037887561 cites W2089525884 @default.
- W3037887561 cites W2093497606 @default.
- W3037887561 cites W2109593963 @default.
- W3037887561 cites W2114016611 @default.
- W3037887561 cites W2122387521 @default.
- W3037887561 cites W2139127841 @default.
- W3037887561 cites W2142466598 @default.
- W3037887561 cites W2148796000 @default.
- W3037887561 cites W2156221766 @default.
- W3037887561 cites W2238416388 @default.
- W3037887561 cites W2290776300 @default.
- W3037887561 cites W2292811587 @default.
- W3037887561 cites W2302787198 @default.
- W3037887561 cites W2312255598 @default.
- W3037887561 cites W2317390314 @default.
- W3037887561 cites W2322708340 @default.
- W3037887561 cites W2334824554 @default.
- W3037887561 cites W2337848222 @default.
- W3037887561 cites W2346212696 @default.
- W3037887561 cites W2468636334 @default.
- W3037887561 cites W2527074823 @default.
- W3037887561 cites W2546704663 @default.
- W3037887561 cites W2551056412 @default.
- W3037887561 cites W2559869890 @default.
- W3037887561 cites W2583699664 @default.
- W3037887561 cites W2586397854 @default.
- W3037887561 cites W2617517745 @default.
- W3037887561 cites W2744627285 @default.
- W3037887561 cites W2752364557 @default.
- W3037887561 cites W2757278795 @default.
- W3037887561 cites W2760488033 @default.
- W3037887561 cites W2761334701 @default.
- W3037887561 cites W2765652054 @default.
- W3037887561 cites W2766179558 @default.
- W3037887561 cites W2785994775 @default.
- W3037887561 cites W2789951767 @default.
- W3037887561 cites W2790229793 @default.
- W3037887561 cites W2793973612 @default.
- W3037887561 cites W2809373216 @default.
- W3037887561 cites W2809851144 @default.
- W3037887561 cites W2890921037 @default.
- W3037887561 cites W2891722456 @default.
- W3037887561 cites W2895379558 @default.
- W3037887561 cites W2900882742 @default.
- W3037887561 cites W2908871603 @default.
- W3037887561 cites W2909248757 @default.
- W3037887561 cites W2910764250 @default.
- W3037887561 cites W2915850450 @default.
- W3037887561 cites W2920475993 @default.
- W3037887561 cites W2949891723 @default.
- W3037887561 cites W2957045341 @default.
- W3037887561 cites W2983058351 @default.
- W3037887561 cites W2984594959 @default.
- W3037887561 cites W2991540122 @default.
- W3037887561 cites W3000742600 @default.
- W3037887561 cites W3006459198 @default.
- W3037887561 cites W761176877 @default.
- W3037887561 doi "https://doi.org/10.1088/1361-6528/ab9fb6" @default.
- W3037887561 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32580178" @default.
- W3037887561 hasPublicationYear "2020" @default.
- W3037887561 type Work @default.
- W3037887561 sameAs 3037887561 @default.
- W3037887561 citedByCount "19" @default.
- W3037887561 countsByYear W30378875612021 @default.
- W3037887561 countsByYear W30378875612022 @default.
- W3037887561 countsByYear W30378875612023 @default.
- W3037887561 crossrefType "journal-article" @default.
- W3037887561 hasAuthorship W3037887561A5030401334 @default.
- W3037887561 hasAuthorship W3037887561A5036152156 @default.
- W3037887561 hasAuthorship W3037887561A5038019321 @default.
- W3037887561 hasConcept C113196181 @default.
- W3037887561 hasConcept C127413603 @default.
- W3037887561 hasConcept C134018914 @default.