Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037893493> ?p ?o ?g. }
- W3037893493 endingPage "233" @default.
- W3037893493 startingPage "219" @default.
- W3037893493 abstract "This paper proposes a novel enhancement for competitive swarm optimizer (CSO) by mutating loser particles (agents) from the swarm to increase the swarm diversity and improve space exploration capability, namely competitive swarm optimizer with mutated agents (CSO-MA). The selection mechanism is carried out so that it does not retard the search if agents are exploring in promising areas. Simulation results show that CSO-MA has a better exploration–exploitation balance than CSO and generally outperforms CSO, which is one of the state-of-the-art metaheuristic algorithms for optimization. We show additionally that it also generally outperforms swarm based types of algorithms and an exemplary and popular non-swarm based algorithm called Cuckoo search, without requiring a lot more CPU time. We apply CSO-MA to find a c-optimal approximate design for a high-dimensional optimal design problem when other swarm algorithms were not able to. As applications, we use the CSO-MA to search various optimal designs for a series of high-dimensional statistical models. The proposed CSO-MA algorithm is a general-purpose optimizing tool and can be directly amended to find other types of optimal designs for nonlinear models, including optimal exact designs under a convex or non-convex criterion." @default.
- W3037893493 created "2020-07-02" @default.
- W3037893493 creator A5024743253 @default.
- W3037893493 creator A5025285243 @default.
- W3037893493 creator A5050143476 @default.
- W3037893493 date "2020-06-23" @default.
- W3037893493 modified "2023-10-18" @default.
- W3037893493 title "Competitive swarm optimizer with mutated agents for finding optimal designs for nonlinear regression models with multiple interacting factors" @default.
- W3037893493 cites W100203296 @default.
- W3037893493 cites W1132038451 @default.
- W3037893493 cites W1567473651 @default.
- W3037893493 cites W1577668191 @default.
- W3037893493 cites W1595159159 @default.
- W3037893493 cites W1658374639 @default.
- W3037893493 cites W1858731859 @default.
- W3037893493 cites W1925428099 @default.
- W3037893493 cites W1964483216 @default.
- W3037893493 cites W1976744965 @default.
- W3037893493 cites W1982356933 @default.
- W3037893493 cites W1984873220 @default.
- W3037893493 cites W1987234899 @default.
- W3037893493 cites W1988698908 @default.
- W3037893493 cites W1994867044 @default.
- W3037893493 cites W1995972800 @default.
- W3037893493 cites W2014126998 @default.
- W3037893493 cites W2017454556 @default.
- W3037893493 cites W2037395808 @default.
- W3037893493 cites W2047094503 @default.
- W3037893493 cites W2047834011 @default.
- W3037893493 cites W2050322675 @default.
- W3037893493 cites W2060179935 @default.
- W3037893493 cites W2064103901 @default.
- W3037893493 cites W2081749411 @default.
- W3037893493 cites W2099655666 @default.
- W3037893493 cites W2102889464 @default.
- W3037893493 cites W2104274529 @default.
- W3037893493 cites W2106625051 @default.
- W3037893493 cites W2108388069 @default.
- W3037893493 cites W2109116383 @default.
- W3037893493 cites W2110250181 @default.
- W3037893493 cites W2112942103 @default.
- W3037893493 cites W2114620686 @default.
- W3037893493 cites W2125899728 @default.
- W3037893493 cites W2126105956 @default.
- W3037893493 cites W2130660361 @default.
- W3037893493 cites W2135232426 @default.
- W3037893493 cites W2138727729 @default.
- W3037893493 cites W2138878140 @default.
- W3037893493 cites W2155005783 @default.
- W3037893493 cites W2156566884 @default.
- W3037893493 cites W2157107726 @default.
- W3037893493 cites W2158242120 @default.
- W3037893493 cites W2158534713 @default.
- W3037893493 cites W2162012556 @default.
- W3037893493 cites W2170186790 @default.
- W3037893493 cites W2238352310 @default.
- W3037893493 cites W2334480159 @default.
- W3037893493 cites W2469359785 @default.
- W3037893493 cites W2484085037 @default.
- W3037893493 cites W2528103328 @default.
- W3037893493 cites W2557427582 @default.
- W3037893493 cites W2558379956 @default.
- W3037893493 cites W2573652148 @default.
- W3037893493 cites W2613818156 @default.
- W3037893493 cites W2626371998 @default.
- W3037893493 cites W2754215625 @default.
- W3037893493 cites W2789762270 @default.
- W3037893493 cites W2790260553 @default.
- W3037893493 cites W2940478829 @default.
- W3037893493 cites W2975247499 @default.
- W3037893493 cites W2977957397 @default.
- W3037893493 cites W3125160341 @default.
- W3037893493 cites W4300031234 @default.
- W3037893493 cites W588037209 @default.
- W3037893493 doi "https://doi.org/10.1007/s12293-020-00305-6" @default.
- W3037893493 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7968042" @default.
- W3037893493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33747240" @default.
- W3037893493 hasPublicationYear "2020" @default.
- W3037893493 type Work @default.
- W3037893493 sameAs 3037893493 @default.
- W3037893493 citedByCount "11" @default.
- W3037893493 countsByYear W30378934932021 @default.
- W3037893493 countsByYear W30378934932022 @default.
- W3037893493 countsByYear W30378934932023 @default.
- W3037893493 crossrefType "journal-article" @default.
- W3037893493 hasAuthorship W3037893493A5024743253 @default.
- W3037893493 hasAuthorship W3037893493A5025285243 @default.
- W3037893493 hasAuthorship W3037893493A5050143476 @default.
- W3037893493 hasBestOaLocation W30378934932 @default.
- W3037893493 hasConcept C109718341 @default.
- W3037893493 hasConcept C11413529 @default.
- W3037893493 hasConcept C117241572 @default.
- W3037893493 hasConcept C119487961 @default.
- W3037893493 hasConcept C119857082 @default.
- W3037893493 hasConcept C121332964 @default.
- W3037893493 hasConcept C122357587 @default.
- W3037893493 hasConcept C126255220 @default.
- W3037893493 hasConcept C158622935 @default.