Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037895493> ?p ?o ?g. }
- W3037895493 endingPage "113052" @default.
- W3037895493 startingPage "113052" @default.
- W3037895493 abstract "• Electron energy loss spectroscopy (EELS) requires background fitting and removal. • Scripts for background subtraction have been written in MATLAB. • The scripts can be applied to core, low, and ultra-low loss EELS. • Statistical information on the goodness-of-fit is given. • Several examples of background subtraction are presented in the main text. Electron energy-loss spectroscopy (EELS) is a technique that can give useful information on elemental composition and bonding environments. However in practice, the complexity of the background contributions, which can arise from multiple sources, can hamper the interpretation of the spectra. As a result, background removal is both an essential and difficult part of EELS analysis, especially during quantification of elemental composition. Typically, a power law is used to fit the background but this is often not suitable for many spectra such as in the low-loss region (< 50 eV) and when there are overlapping EELS edges. In this article, we present a series of scripts written in MATLAB v. R2019b that aims to provide statistical information on the model used to fit the background, allowing the user to determine the accuracy of background subtraction. The scripts were written for background subtraction of vibrational EELS in the ultralow-loss region near the zero-loss peak but can also be applied to other kinds of EEL spectra. The scripts can use a range of models for fitting, provided by the Curve Fitting Toolbox of MATLAB, and the user is able to precisely define the window for fitting as well as for edge integration. We demonstrate the advantages of using these scripts by comparing their background subtraction of example spectra to the most commonly used software, Gatan Microscopy Suite 3. The example spectra include those containing multiple scattering, multiple overlapping peaks, as well as vibrational EELS. Additionally, a comprehensive guide to using the scripts has been included in the Supplementary Information." @default.
- W3037895493 created "2020-07-02" @default.
- W3037895493 creator A5006504709 @default.
- W3037895493 creator A5009807266 @default.
- W3037895493 creator A5038036089 @default.
- W3037895493 creator A5039227802 @default.
- W3037895493 creator A5042485567 @default.
- W3037895493 creator A5063887109 @default.
- W3037895493 creator A5088830612 @default.
- W3037895493 date "2020-10-01" @default.
- W3037895493 modified "2023-10-05" @default.
- W3037895493 title "Accurate EELS background subtraction – an adaptable method in MATLAB" @default.
- W3037895493 cites W1971943895 @default.
- W3037895493 cites W1988510032 @default.
- W3037895493 cites W2008095423 @default.
- W3037895493 cites W2015265281 @default.
- W3037895493 cites W2027825539 @default.
- W3037895493 cites W2032830791 @default.
- W3037895493 cites W2037224888 @default.
- W3037895493 cites W2043341689 @default.
- W3037895493 cites W2044071938 @default.
- W3037895493 cites W2073731302 @default.
- W3037895493 cites W2078291005 @default.
- W3037895493 cites W2131610479 @default.
- W3037895493 cites W2156387937 @default.
- W3037895493 cites W2160368891 @default.
- W3037895493 cites W2327194972 @default.
- W3037895493 cites W2610225969 @default.
- W3037895493 cites W2735645443 @default.
- W3037895493 cites W2799411109 @default.
- W3037895493 cites W2888076304 @default.
- W3037895493 cites W2904673476 @default.
- W3037895493 cites W2995155781 @default.
- W3037895493 cites W2999827202 @default.
- W3037895493 cites W3101798760 @default.
- W3037895493 cites W4229825478 @default.
- W3037895493 doi "https://doi.org/10.1016/j.ultramic.2020.113052" @default.
- W3037895493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32629304" @default.
- W3037895493 hasPublicationYear "2020" @default.
- W3037895493 type Work @default.
- W3037895493 sameAs 3037895493 @default.
- W3037895493 citedByCount "9" @default.
- W3037895493 countsByYear W30378954932020 @default.
- W3037895493 countsByYear W30378954932021 @default.
- W3037895493 countsByYear W30378954932022 @default.
- W3037895493 crossrefType "journal-article" @default.
- W3037895493 hasAuthorship W3037895493A5006504709 @default.
- W3037895493 hasAuthorship W3037895493A5009807266 @default.
- W3037895493 hasAuthorship W3037895493A5038036089 @default.
- W3037895493 hasAuthorship W3037895493A5039227802 @default.
- W3037895493 hasAuthorship W3037895493A5042485567 @default.
- W3037895493 hasAuthorship W3037895493A5063887109 @default.
- W3037895493 hasAuthorship W3037895493A5088830612 @default.
- W3037895493 hasBestOaLocation W30378954931 @default.
- W3037895493 hasConcept C105795698 @default.
- W3037895493 hasConcept C111919701 @default.
- W3037895493 hasConcept C11413529 @default.
- W3037895493 hasConcept C119857082 @default.
- W3037895493 hasConcept C120665830 @default.
- W3037895493 hasConcept C121332964 @default.
- W3037895493 hasConcept C1276947 @default.
- W3037895493 hasConcept C132480984 @default.
- W3037895493 hasConcept C146088050 @default.
- W3037895493 hasConcept C154945302 @default.
- W3037895493 hasConcept C160633673 @default.
- W3037895493 hasConcept C178187954 @default.
- W3037895493 hasConcept C184389593 @default.
- W3037895493 hasConcept C186370098 @default.
- W3037895493 hasConcept C2780365114 @default.
- W3037895493 hasConcept C30475298 @default.
- W3037895493 hasConcept C32653426 @default.
- W3037895493 hasConcept C33923547 @default.
- W3037895493 hasConcept C41008148 @default.
- W3037895493 hasConcept C4839761 @default.
- W3037895493 hasConcept C61423126 @default.
- W3037895493 hasConcept C68060419 @default.
- W3037895493 hasConcept C94375191 @default.
- W3037895493 hasConceptScore W3037895493C105795698 @default.
- W3037895493 hasConceptScore W3037895493C111919701 @default.
- W3037895493 hasConceptScore W3037895493C11413529 @default.
- W3037895493 hasConceptScore W3037895493C119857082 @default.
- W3037895493 hasConceptScore W3037895493C120665830 @default.
- W3037895493 hasConceptScore W3037895493C121332964 @default.
- W3037895493 hasConceptScore W3037895493C1276947 @default.
- W3037895493 hasConceptScore W3037895493C132480984 @default.
- W3037895493 hasConceptScore W3037895493C146088050 @default.
- W3037895493 hasConceptScore W3037895493C154945302 @default.
- W3037895493 hasConceptScore W3037895493C160633673 @default.
- W3037895493 hasConceptScore W3037895493C178187954 @default.
- W3037895493 hasConceptScore W3037895493C184389593 @default.
- W3037895493 hasConceptScore W3037895493C186370098 @default.
- W3037895493 hasConceptScore W3037895493C2780365114 @default.
- W3037895493 hasConceptScore W3037895493C30475298 @default.
- W3037895493 hasConceptScore W3037895493C32653426 @default.
- W3037895493 hasConceptScore W3037895493C33923547 @default.
- W3037895493 hasConceptScore W3037895493C41008148 @default.
- W3037895493 hasConceptScore W3037895493C4839761 @default.
- W3037895493 hasConceptScore W3037895493C61423126 @default.