Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037908913> ?p ?o ?g. }
- W3037908913 abstract "Abstract Background Road traffic crashes are a major and increasing cause of injury and death around the world. In 2015, there were almost 6.3 million motor vehicle traffic crashes in the United States. Of these, approximately 1.7 million (27%) involved some form of injury and 32,166 (0.5%) resulted in one or more fatalities (National Highway Traffic Safety Administration, 2016, Traffic Safety Facts 2013: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System). The most common cause of urban crashes appears to be drivers running red lights or ignoring other traffic controls and injuries occur in 39% of all of these types of crashes (Insurance Institute for Highway Safety, IIHS, 2018, Red light running). While many drivers obey traffic signals, the possibility for violations exists due to issues such as driver distraction, aggressive driving behaviors, or a deliberate decision to ignore the traffic signal. One researcher suggests that eliminating traffic violations could reduce road injury crashes by up to 40% (Zaal, 1994, Traffic law enforcement: A review of the literature ). Red light cameras (RLCs) are an enforcement mechanism that permit police to remotely enforce traffic signals; they may serve as a deterrent to drivers who intentionally engage in red light running (RLR). The one previous systematic review of RLCs found that they were effective in reducing total casualty crashes but also found that evidence on the effectiveness of cameras on red light violations, total crashes, or specific types of casualty crashes was inconclusive. However, this review searched only a small number of electronic databases and was limited to a handful of studies published in 2002 or earlier. Objectives This report updates and expands upon the previous Cochrane systematic review of RLCs. The aim of this review is to systematically review and synthesize the available evidence on the effectiveness of RLCs on the incidence of red light violations and the incidence and severity of various types of traffic crashes. Search Methods This study uses a four‐part search strategy that involves: (a) searching 27 online electronic bibliographic databases for published and unpublished evaluations of RLCs; (b) searching the websites of 46 international institutes and research agencies focusing on transportation issues for reports and other gray literature; (c) searching the reference lists of published studies to identify additional published and unpublished works; and (d) conducting a keyword search using Google and Google Scholar to search for additional gray literature. Selection Criteria The criteria for inclusion were determined before the search process began. To be eligible, studies must have assessed the impact of RLCs on red light violations and/or traffic crashes. Studies must have employed a quantitative research design that involved randomized controlled trials, quasi‐random controlled trials, a controlled before‐after design, or a controlled interrupted time series. Research that incorporated additional interventions, such as speed cameras or enhanced police enforcement, were excluded, although normal routine traffic enforcement in the nonintervention control condition was not excluded. Both published and unpublished reports were included. Studies were eligible regardless of the country in which they were conducted or the date of publication. Qualitative, observational, or descriptive studies that did not include formal comparisons of treatment and control groups were excluded from this research. Data Collection and Analysis Initial searches produced a total of 5,708 references after duplicates were removed. After title and abstract screening, a total of 121 references remained. Full‐text review of these works identified 28 primary studies meeting the inclusion criteria, in addition to the 10 studies identified in the prior Cochrane review. Because several of the primary studies reported on multiple independent study areas, this report evaluates 41 separate analyses. At least two review authors independently assessed all records for eligibility, assessed methodological risk of bias, and extracted data from the full‐text reports; disagreements were resolved by discussion with a third review author. To facilitate comparisons between studies, a standardized summary measure based on relative effects, rather than differences in effects, was defined for each outcome. Summary measures were calculated for all studies when possible. When at least three studies reported the same outcome, the results were pooled in a meta‐analysis. Pooled meta‐analyses were carried out when at least three studies reported the same outcome; otherwise, the results of individual studies were described in a narrative. Heterogeneity among effect estimates was assessed using χ 2 tests at a 5% level of significance and quantified using the I 2 statistic. EMMIE framework data were coded using the EPPIE Reviewer database. Results The results of this systematic review suggest that RLCs are associated with a statistically significant reduction in crash outcomes, although this varies by type of crash, and suggest a reduction in red light violations. RLCs are associated with a a 20% decrease in total injury crashes, a 24% decrease in right angle crashes and a 29% decrease in right angle injury crashes. Conversely, however, RLCs are also associated with a statistically significant increase in rear end crashes of 19%. There was also some evidence that RLCs were associated with a large reduction in crashes due to red light violations. There is no evidence to suggest that study heterogeneity is consistently explained by either country or risk of bias, nor did the presence or absence of warning signs appear to impact the effectiveness of RLCs. Studies accounting for regression to the mean tend to report more moderate decreases for right angle crashes resulting in injury than studies not accounting for regression to the mean. Studies with better control for confounders reported a nonsignificant decrease in right angle crashes, compared with a significant decrease for all studies. Authors' Conclusions The evidence suggests that RLCs may be effective in reducing red light violations and are likely to be effective in reducing some types of traffic crashes, although they also appear linked to an increase in rear end crashes. Several implications for policymakers and practitioners have emerged from this research. The costs and benefits of RLCs must be considered when implementing RLC programs. The potential benefits of a reduction in traffic violations and in some types of injury crashes must be weighed against the increased risk of other crash types. The economic implications of operating an RLC program also must be considered, including the costs of installation and operation as well as the economic impact of RLC effects." @default.
- W3037908913 created "2020-07-02" @default.
- W3037908913 creator A5013430761 @default.
- W3037908913 creator A5014028559 @default.
- W3037908913 creator A5016785122 @default.
- W3037908913 creator A5050796852 @default.
- W3037908913 creator A5089004131 @default.
- W3037908913 date "2020-06-01" @default.
- W3037908913 modified "2023-10-17" @default.
- W3037908913 title "Red light camera interventions for reducing traffic violations and traffic crashes: A systematic review" @default.
- W3037908913 cites W112392012 @default.
- W3037908913 cites W1536859150 @default.
- W3037908913 cites W1545080764 @default.
- W3037908913 cites W1626324416 @default.
- W3037908913 cites W1962349400 @default.
- W3037908913 cites W1967278130 @default.
- W3037908913 cites W1972629803 @default.
- W3037908913 cites W1975998913 @default.
- W3037908913 cites W1976483207 @default.
- W3037908913 cites W1981420270 @default.
- W3037908913 cites W1982097410 @default.
- W3037908913 cites W1983966847 @default.
- W3037908913 cites W1985951415 @default.
- W3037908913 cites W1986325365 @default.
- W3037908913 cites W1995603450 @default.
- W3037908913 cites W2000268240 @default.
- W3037908913 cites W2010127531 @default.
- W3037908913 cites W2014059632 @default.
- W3037908913 cites W2020219151 @default.
- W3037908913 cites W2025078287 @default.
- W3037908913 cites W2035760234 @default.
- W3037908913 cites W2047064644 @default.
- W3037908913 cites W2055185269 @default.
- W3037908913 cites W2058882296 @default.
- W3037908913 cites W2060811115 @default.
- W3037908913 cites W2065015290 @default.
- W3037908913 cites W2081273099 @default.
- W3037908913 cites W2085123636 @default.
- W3037908913 cites W2091667667 @default.
- W3037908913 cites W2096017789 @default.
- W3037908913 cites W2096881176 @default.
- W3037908913 cites W2108226432 @default.
- W3037908913 cites W2108757257 @default.
- W3037908913 cites W2114289633 @default.
- W3037908913 cites W2131909016 @default.
- W3037908913 cites W2154075510 @default.
- W3037908913 cites W2155188667 @default.
- W3037908913 cites W2164612243 @default.
- W3037908913 cites W2169561903 @default.
- W3037908913 cites W2579911499 @default.
- W3037908913 cites W34448551 @default.
- W3037908913 cites W376915030 @default.
- W3037908913 cites W4234100908 @default.
- W3037908913 cites W4237504953 @default.
- W3037908913 doi "https://doi.org/10.1002/cl2.1091" @default.
- W3037908913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37131412" @default.
- W3037908913 hasPublicationYear "2020" @default.
- W3037908913 type Work @default.
- W3037908913 sameAs 3037908913 @default.
- W3037908913 citedByCount "7" @default.
- W3037908913 countsByYear W30379089132021 @default.
- W3037908913 countsByYear W30379089132022 @default.
- W3037908913 countsByYear W30379089132023 @default.
- W3037908913 crossrefType "journal-article" @default.
- W3037908913 hasAuthorship W3037908913A5013430761 @default.
- W3037908913 hasAuthorship W3037908913A5014028559 @default.
- W3037908913 hasAuthorship W3037908913A5016785122 @default.
- W3037908913 hasAuthorship W3037908913A5050796852 @default.
- W3037908913 hasAuthorship W3037908913A5089004131 @default.
- W3037908913 hasBestOaLocation W30379089131 @default.
- W3037908913 hasConcept C118552586 @default.
- W3037908913 hasConcept C15744967 @default.
- W3037908913 hasConcept C190385971 @default.
- W3037908913 hasConcept C27415008 @default.
- W3037908913 hasConcept C2778950892 @default.
- W3037908913 hasConcept C3017944768 @default.
- W3037908913 hasConcept C41008148 @default.
- W3037908913 hasConcept C545542383 @default.
- W3037908913 hasConcept C71924100 @default.
- W3037908913 hasConceptScore W3037908913C118552586 @default.
- W3037908913 hasConceptScore W3037908913C15744967 @default.
- W3037908913 hasConceptScore W3037908913C190385971 @default.
- W3037908913 hasConceptScore W3037908913C27415008 @default.
- W3037908913 hasConceptScore W3037908913C2778950892 @default.
- W3037908913 hasConceptScore W3037908913C3017944768 @default.
- W3037908913 hasConceptScore W3037908913C41008148 @default.
- W3037908913 hasConceptScore W3037908913C545542383 @default.
- W3037908913 hasConceptScore W3037908913C71924100 @default.
- W3037908913 hasIssue "2" @default.
- W3037908913 hasLocation W30379089131 @default.
- W3037908913 hasLocation W30379089132 @default.
- W3037908913 hasLocation W30379089133 @default.
- W3037908913 hasOpenAccess W3037908913 @default.
- W3037908913 hasPrimaryLocation W30379089131 @default.
- W3037908913 hasRelatedWork W1596801655 @default.
- W3037908913 hasRelatedWork W2130043461 @default.
- W3037908913 hasRelatedWork W2350741829 @default.
- W3037908913 hasRelatedWork W2358668433 @default.
- W3037908913 hasRelatedWork W2376932109 @default.
- W3037908913 hasRelatedWork W2382290278 @default.