Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037915326> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3037915326 endingPage "519" @default.
- W3037915326 startingPage "511" @default.
- W3037915326 abstract "AbstractForecasting market performance and understanding the mechanism of price discovery is inherent to develop trading strategies. This paper examines the predictive power of machine learning algorithms in forecasting stock index. The study applies various machine learning algorithms and suggests the best model for forecasting stock index. We have developed an ensemble model to predict the daily closing index of Nifty 50 based on open, high, low and previous day’s close. The ensemble model includes a mix of simple linear regression, gradient boosted tree, decision tree and random forest. The parameters of the models are tested for its accuracy train-test split under supervised learning. The predicting accuracy of machine learning algorithms is further refined using cross-validation techniques that include leaving one out cross-validation and k-fold cross-validation. We found that the ensemble model provides an accurate forecast of the stock market index for the short term. The outcome of the study would facilitate the investors and portfolio managers to use the appropriate model for forecasting and take an informed decision by considering the nature of stock market volatility.KeywordsForecastingLinear regressionGradient boosted treeDecision tree and random forestEnsemble" @default.
- W3037915326 created "2020-07-02" @default.
- W3037915326 creator A5038627774 @default.
- W3037915326 creator A5039967051 @default.
- W3037915326 date "2020-06-12" @default.
- W3037915326 modified "2023-09-25" @default.
- W3037915326 title "Does Machine Learning Algorithms Improve Forecasting Accuracy? Predicting Stock Market Index Using Ensemble Model" @default.
- W3037915326 cites W1815264562 @default.
- W3037915326 cites W1966676388 @default.
- W3037915326 cites W2624385633 @default.
- W3037915326 cites W2810156540 @default.
- W3037915326 cites W3125666236 @default.
- W3037915326 doi "https://doi.org/10.1007/978-981-15-4218-3_50" @default.
- W3037915326 hasPublicationYear "2020" @default.
- W3037915326 type Work @default.
- W3037915326 sameAs 3037915326 @default.
- W3037915326 citedByCount "0" @default.
- W3037915326 crossrefType "book-chapter" @default.
- W3037915326 hasAuthorship W3037915326A5038627774 @default.
- W3037915326 hasAuthorship W3037915326A5039967051 @default.
- W3037915326 hasConcept C10138342 @default.
- W3037915326 hasConcept C111472728 @default.
- W3037915326 hasConcept C119857082 @default.
- W3037915326 hasConcept C119898033 @default.
- W3037915326 hasConcept C136764020 @default.
- W3037915326 hasConcept C138885662 @default.
- W3037915326 hasConcept C149782125 @default.
- W3037915326 hasConcept C151730666 @default.
- W3037915326 hasConcept C154945302 @default.
- W3037915326 hasConcept C162324750 @default.
- W3037915326 hasConcept C169258074 @default.
- W3037915326 hasConcept C27181475 @default.
- W3037915326 hasConcept C2777382242 @default.
- W3037915326 hasConcept C2778136018 @default.
- W3037915326 hasConcept C2780299701 @default.
- W3037915326 hasConcept C2780762169 @default.
- W3037915326 hasConcept C2780821815 @default.
- W3037915326 hasConcept C33923547 @default.
- W3037915326 hasConcept C41008148 @default.
- W3037915326 hasConcept C45942800 @default.
- W3037915326 hasConcept C84525736 @default.
- W3037915326 hasConcept C86803240 @default.
- W3037915326 hasConcept C88389905 @default.
- W3037915326 hasConcept C91602232 @default.
- W3037915326 hasConceptScore W3037915326C10138342 @default.
- W3037915326 hasConceptScore W3037915326C111472728 @default.
- W3037915326 hasConceptScore W3037915326C119857082 @default.
- W3037915326 hasConceptScore W3037915326C119898033 @default.
- W3037915326 hasConceptScore W3037915326C136764020 @default.
- W3037915326 hasConceptScore W3037915326C138885662 @default.
- W3037915326 hasConceptScore W3037915326C149782125 @default.
- W3037915326 hasConceptScore W3037915326C151730666 @default.
- W3037915326 hasConceptScore W3037915326C154945302 @default.
- W3037915326 hasConceptScore W3037915326C162324750 @default.
- W3037915326 hasConceptScore W3037915326C169258074 @default.
- W3037915326 hasConceptScore W3037915326C27181475 @default.
- W3037915326 hasConceptScore W3037915326C2777382242 @default.
- W3037915326 hasConceptScore W3037915326C2778136018 @default.
- W3037915326 hasConceptScore W3037915326C2780299701 @default.
- W3037915326 hasConceptScore W3037915326C2780762169 @default.
- W3037915326 hasConceptScore W3037915326C2780821815 @default.
- W3037915326 hasConceptScore W3037915326C33923547 @default.
- W3037915326 hasConceptScore W3037915326C41008148 @default.
- W3037915326 hasConceptScore W3037915326C45942800 @default.
- W3037915326 hasConceptScore W3037915326C84525736 @default.
- W3037915326 hasConceptScore W3037915326C86803240 @default.
- W3037915326 hasConceptScore W3037915326C88389905 @default.
- W3037915326 hasConceptScore W3037915326C91602232 @default.
- W3037915326 hasLocation W30379153261 @default.
- W3037915326 hasOpenAccess W3037915326 @default.
- W3037915326 hasPrimaryLocation W30379153261 @default.
- W3037915326 hasRelatedWork W2883828728 @default.
- W3037915326 hasRelatedWork W3021960267 @default.
- W3037915326 hasRelatedWork W3037915326 @default.
- W3037915326 hasRelatedWork W3126015411 @default.
- W3037915326 hasRelatedWork W3173611487 @default.
- W3037915326 hasRelatedWork W4281560664 @default.
- W3037915326 hasRelatedWork W4283016678 @default.
- W3037915326 hasRelatedWork W4285298015 @default.
- W3037915326 hasRelatedWork W4293069612 @default.
- W3037915326 hasRelatedWork W4296901315 @default.
- W3037915326 isParatext "false" @default.
- W3037915326 isRetracted "false" @default.
- W3037915326 magId "3037915326" @default.
- W3037915326 workType "book-chapter" @default.