Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037917870> ?p ?o ?g. }
- W3037917870 endingPage "1993" @default.
- W3037917870 startingPage "1993" @default.
- W3037917870 abstract "This paper presents the analysis and a methodology for monitoring asparagus crops from remote sensing observations in a tropical region, where the local climatological conditions allow farmers to grow two production cycles per year. We used the freely available dual-polarisation GRD data provided by the Sentinel-1 satellite, temperature from a ground station and ground truth from January to August of 2019 to perform the analysis. We showed how particularly the VH polarisation can be used for monitoring the canopy formation, density and the growth rate, revealing connections with temperature. We also present a multi-output machine learning regression algorithm trained on a rich spatio-temporal dataset in which each output estimates the number of asparagus stems that are present in each of the pre-defined crop phenological stages. We tested several scenarios that evaluated the importance of each input data source and feature, with results that showed that the methodology was able to retrieve the number of asparagus stems in each crop stage when using information about starting date and temperature as predictors with coefficients of determination ( R 2 ) between 0.84 and 0.86 and root mean squared error (RMSE) between 2.9 and 2.7. For the multitemporal SAR scenario, results showed a maximum R 2 of 0.87 when using up to 5 images as input and an RMSE that maintains approximately the same values as the number of images increased. This suggests that for the conditions evaluated in this paper, the use of multitemporal SAR data only improved mildly the retrieval when the season start date and accumulated temperature are used to complement the backscatter." @default.
- W3037917870 created "2020-07-02" @default.
- W3037917870 creator A5012507723 @default.
- W3037917870 creator A5019669409 @default.
- W3037917870 creator A5060598315 @default.
- W3037917870 date "2020-06-21" @default.
- W3037917870 modified "2023-10-17" @default.
- W3037917870 title "Monitoring Agricultural Fields Using Sentinel-1 and Temperature Data in Peru: Case Study of Asparagus (Asparagus officinalis L.)" @default.
- W3037917870 cites W1572525164 @default.
- W3037917870 cites W1970004911 @default.
- W3037917870 cites W1981561767 @default.
- W3037917870 cites W2003704666 @default.
- W3037917870 cites W2015176269 @default.
- W3037917870 cites W2027134814 @default.
- W3037917870 cites W2049719492 @default.
- W3037917870 cites W2076335508 @default.
- W3037917870 cites W2081820160 @default.
- W3037917870 cites W2084714454 @default.
- W3037917870 cites W2090151803 @default.
- W3037917870 cites W2117597501 @default.
- W3037917870 cites W2138149909 @default.
- W3037917870 cites W2146675811 @default.
- W3037917870 cites W2169497991 @default.
- W3037917870 cites W2171688314 @default.
- W3037917870 cites W2342039566 @default.
- W3037917870 cites W2406711962 @default.
- W3037917870 cites W2485344327 @default.
- W3037917870 cites W2725897987 @default.
- W3037917870 cites W2745131289 @default.
- W3037917870 cites W2792309568 @default.
- W3037917870 cites W2792632832 @default.
- W3037917870 cites W2897915518 @default.
- W3037917870 cites W2900773919 @default.
- W3037917870 cites W2911964244 @default.
- W3037917870 cites W2913340405 @default.
- W3037917870 cites W2918782684 @default.
- W3037917870 cites W2955625807 @default.
- W3037917870 cites W2955928210 @default.
- W3037917870 cites W2966744467 @default.
- W3037917870 cites W2969011938 @default.
- W3037917870 cites W3000271845 @default.
- W3037917870 cites W3001402238 @default.
- W3037917870 cites W4242614154 @default.
- W3037917870 doi "https://doi.org/10.3390/rs12121993" @default.
- W3037917870 hasPublicationYear "2020" @default.
- W3037917870 type Work @default.
- W3037917870 sameAs 3037917870 @default.
- W3037917870 citedByCount "2" @default.
- W3037917870 countsByYear W30379178702022 @default.
- W3037917870 countsByYear W30379178702023 @default.
- W3037917870 crossrefType "journal-article" @default.
- W3037917870 hasAuthorship W3037917870A5012507723 @default.
- W3037917870 hasAuthorship W3037917870A5019669409 @default.
- W3037917870 hasAuthorship W3037917870A5060598315 @default.
- W3037917870 hasBestOaLocation W30379178701 @default.
- W3037917870 hasConcept C101000010 @default.
- W3037917870 hasConcept C105795698 @default.
- W3037917870 hasConcept C127413603 @default.
- W3037917870 hasConcept C137580998 @default.
- W3037917870 hasConcept C139945424 @default.
- W3037917870 hasConcept C144027150 @default.
- W3037917870 hasConcept C146849305 @default.
- W3037917870 hasConcept C146978453 @default.
- W3037917870 hasConcept C154945302 @default.
- W3037917870 hasConcept C19269812 @default.
- W3037917870 hasConcept C205649164 @default.
- W3037917870 hasConcept C2776879769 @default.
- W3037917870 hasConcept C33923547 @default.
- W3037917870 hasConcept C39432304 @default.
- W3037917870 hasConcept C41008148 @default.
- W3037917870 hasConcept C59822182 @default.
- W3037917870 hasConcept C62649853 @default.
- W3037917870 hasConcept C86803240 @default.
- W3037917870 hasConcept C97137747 @default.
- W3037917870 hasConceptScore W3037917870C101000010 @default.
- W3037917870 hasConceptScore W3037917870C105795698 @default.
- W3037917870 hasConceptScore W3037917870C127413603 @default.
- W3037917870 hasConceptScore W3037917870C137580998 @default.
- W3037917870 hasConceptScore W3037917870C139945424 @default.
- W3037917870 hasConceptScore W3037917870C144027150 @default.
- W3037917870 hasConceptScore W3037917870C146849305 @default.
- W3037917870 hasConceptScore W3037917870C146978453 @default.
- W3037917870 hasConceptScore W3037917870C154945302 @default.
- W3037917870 hasConceptScore W3037917870C19269812 @default.
- W3037917870 hasConceptScore W3037917870C205649164 @default.
- W3037917870 hasConceptScore W3037917870C2776879769 @default.
- W3037917870 hasConceptScore W3037917870C33923547 @default.
- W3037917870 hasConceptScore W3037917870C39432304 @default.
- W3037917870 hasConceptScore W3037917870C41008148 @default.
- W3037917870 hasConceptScore W3037917870C59822182 @default.
- W3037917870 hasConceptScore W3037917870C62649853 @default.
- W3037917870 hasConceptScore W3037917870C86803240 @default.
- W3037917870 hasConceptScore W3037917870C97137747 @default.
- W3037917870 hasIssue "12" @default.
- W3037917870 hasLocation W30379178701 @default.
- W3037917870 hasLocation W30379178702 @default.
- W3037917870 hasLocation W30379178703 @default.
- W3037917870 hasOpenAccess W3037917870 @default.