Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037932154> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3037932154 abstract "Driver workload monitoring is an important component of the intelligent driver assistant systems today. Accurately monitoring a driver's real-time workload is not an easy task. It requires good quality and well-annotated data collected from drivers to train machine learning models. Usually, a model trained for a target driver cannot be applied interchangeably to another target unless data from them have the similar distributions, which is however not commonly seen. This is known as the personal discrepancy problem between individuals. To deal with this problem, one method is to tune an existing model using annotated data collected from the target driver.However, obtaining annotated data from target drivers is a time consuming, labor-costly and sometimes impractical procedure. To cope with this difficulty, we developed an Adversarial Discriminative Neural Network for Multi-Temporal Signals (MTS-ADNN) architecture. With this method, a model can learn transferable features from well-annotated data in source domain and adapts to non- annotated data in target domain, even if data in the two domains have shifted distributions. Different from many existing adversarial learning architectures that aligns only between-domain distributions, the proposed MTS-ADNN can also aligns in-domain classes to ensure in-domain class-conditional distributions are aligned jointly with between-domain distributions. To enhance the performance, we added an entropy-regularizer to target domain sample predictions, and an entropy-aware weight to aggregate the loss of the discriminator. We evaluated the method using a set of workload estimation data collected from real-world diving. We compared its performance with three state-of-the-art unsupervised domain adaptation methods. The results show that the proposed MTS-ADNN outperforms its counterparts." @default.
- W3037932154 created "2020-07-02" @default.
- W3037932154 creator A5037546959 @default.
- W3037932154 creator A5054035359 @default.
- W3037932154 date "2020-05-01" @default.
- W3037932154 modified "2023-10-18" @default.
- W3037932154 title "Unsupervised Driver Workload Learning through Domain Adaptation from Temporal Signals" @default.
- W3037932154 cites W1580490094 @default.
- W3037932154 cites W1978600950 @default.
- W3037932154 cites W1993837778 @default.
- W3037932154 cites W2064447488 @default.
- W3037932154 cites W2072030458 @default.
- W3037932154 cites W2128053425 @default.
- W3037932154 cites W2523098180 @default.
- W3037932154 cites W2569898400 @default.
- W3037932154 cites W2573966230 @default.
- W3037932154 cites W2584009249 @default.
- W3037932154 cites W2593768305 @default.
- W3037932154 cites W2762260497 @default.
- W3037932154 cites W2788768841 @default.
- W3037932154 cites W2799012717 @default.
- W3037932154 cites W2799056151 @default.
- W3037932154 cites W2810658541 @default.
- W3037932154 cites W2926598625 @default.
- W3037932154 cites W2982259084 @default.
- W3037932154 doi "https://doi.org/10.1109/eais48028.2020.9122768" @default.
- W3037932154 hasPublicationYear "2020" @default.
- W3037932154 type Work @default.
- W3037932154 sameAs 3037932154 @default.
- W3037932154 citedByCount "1" @default.
- W3037932154 countsByYear W30379321542022 @default.
- W3037932154 crossrefType "proceedings-article" @default.
- W3037932154 hasAuthorship W3037932154A5037546959 @default.
- W3037932154 hasAuthorship W3037932154A5054035359 @default.
- W3037932154 hasConcept C106301342 @default.
- W3037932154 hasConcept C111919701 @default.
- W3037932154 hasConcept C119857082 @default.
- W3037932154 hasConcept C121332964 @default.
- W3037932154 hasConcept C124101348 @default.
- W3037932154 hasConcept C134306372 @default.
- W3037932154 hasConcept C154945302 @default.
- W3037932154 hasConcept C2776145971 @default.
- W3037932154 hasConcept C2778476105 @default.
- W3037932154 hasConcept C2779803651 @default.
- W3037932154 hasConcept C33923547 @default.
- W3037932154 hasConcept C36503486 @default.
- W3037932154 hasConcept C41008148 @default.
- W3037932154 hasConcept C50644808 @default.
- W3037932154 hasConcept C62520636 @default.
- W3037932154 hasConcept C67186912 @default.
- W3037932154 hasConcept C76155785 @default.
- W3037932154 hasConcept C77088390 @default.
- W3037932154 hasConcept C94915269 @default.
- W3037932154 hasConcept C97931131 @default.
- W3037932154 hasConceptScore W3037932154C106301342 @default.
- W3037932154 hasConceptScore W3037932154C111919701 @default.
- W3037932154 hasConceptScore W3037932154C119857082 @default.
- W3037932154 hasConceptScore W3037932154C121332964 @default.
- W3037932154 hasConceptScore W3037932154C124101348 @default.
- W3037932154 hasConceptScore W3037932154C134306372 @default.
- W3037932154 hasConceptScore W3037932154C154945302 @default.
- W3037932154 hasConceptScore W3037932154C2776145971 @default.
- W3037932154 hasConceptScore W3037932154C2778476105 @default.
- W3037932154 hasConceptScore W3037932154C2779803651 @default.
- W3037932154 hasConceptScore W3037932154C33923547 @default.
- W3037932154 hasConceptScore W3037932154C36503486 @default.
- W3037932154 hasConceptScore W3037932154C41008148 @default.
- W3037932154 hasConceptScore W3037932154C50644808 @default.
- W3037932154 hasConceptScore W3037932154C62520636 @default.
- W3037932154 hasConceptScore W3037932154C67186912 @default.
- W3037932154 hasConceptScore W3037932154C76155785 @default.
- W3037932154 hasConceptScore W3037932154C77088390 @default.
- W3037932154 hasConceptScore W3037932154C94915269 @default.
- W3037932154 hasConceptScore W3037932154C97931131 @default.
- W3037932154 hasLocation W30379321541 @default.
- W3037932154 hasOpenAccess W3037932154 @default.
- W3037932154 hasPrimaryLocation W30379321541 @default.
- W3037932154 hasRelatedWork W10944326 @default.
- W3037932154 hasRelatedWork W1976949388 @default.
- W3037932154 hasRelatedWork W1991466308 @default.
- W3037932154 hasRelatedWork W2251047611 @default.
- W3037932154 hasRelatedWork W2353457699 @default.
- W3037932154 hasRelatedWork W3008648540 @default.
- W3037932154 hasRelatedWork W3039863101 @default.
- W3037932154 hasRelatedWork W4212775509 @default.
- W3037932154 hasRelatedWork W4285044753 @default.
- W3037932154 hasRelatedWork W1629725936 @default.
- W3037932154 isParatext "false" @default.
- W3037932154 isRetracted "false" @default.
- W3037932154 magId "3037932154" @default.
- W3037932154 workType "article" @default.