Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037937296> ?p ?o ?g. }
- W3037937296 endingPage "140519" @default.
- W3037937296 startingPage "140519" @default.
- W3037937296 abstract "The Sustainable Development Goals (SDGs) 6.1 and 6.2 measure the progress of urban and rural populations in their access to different levels of water, sanitation and hygiene (WASH) services, based on multiple sources of information. Service levels add up to 100%; therefore, they are compositional data (CoDa). Despite evidence of zero value, missing data and outliers in the sources of information, the treatment of these irregularities with different statistical techniques has not yet been analyzed for CoDa in the WASH sector. Thus, the results may present biased estimates, and the decisions based on these results will not necessarily be appropriate. In this article, we therefore: i) evaluate methodological imputation alternatives that address the problem of having either zero values or missing values, or both simultaneously; and ii) propose the need to complement the point-to-point identification of the WHO/UNICEF Joint Monitoring Program (JMP) with other robust alternatives, to deal with outliers depending on the number of data points. These suggestions have been considered here using statistics for CoDa with isometric log-ratio (ilr) transformation. A selection of illustrative cases is presented to compare performance of different alternatives." @default.
- W3037937296 created "2020-07-02" @default.
- W3037937296 creator A5049087312 @default.
- W3037937296 creator A5055042167 @default.
- W3037937296 date "2020-11-01" @default.
- W3037937296 modified "2023-09-30" @default.
- W3037937296 title "Preprocessing alternatives for compositional data related to water, sanitation and hygiene" @default.
- W3037937296 cites W1565234293 @default.
- W3037937296 cites W1889594283 @default.
- W3037937296 cites W1969372468 @default.
- W3037937296 cites W1977763388 @default.
- W3037937296 cites W1980924738 @default.
- W3037937296 cites W1981606742 @default.
- W3037937296 cites W1997840440 @default.
- W3037937296 cites W2001064595 @default.
- W3037937296 cites W2002554120 @default.
- W3037937296 cites W2011627547 @default.
- W3037937296 cites W2033904036 @default.
- W3037937296 cites W2046810735 @default.
- W3037937296 cites W2051384456 @default.
- W3037937296 cites W2053756609 @default.
- W3037937296 cites W2056019912 @default.
- W3037937296 cites W2058496349 @default.
- W3037937296 cites W2068302187 @default.
- W3037937296 cites W2078112764 @default.
- W3037937296 cites W2079154561 @default.
- W3037937296 cites W2079484045 @default.
- W3037937296 cites W2081059972 @default.
- W3037937296 cites W2090187219 @default.
- W3037937296 cites W2093514336 @default.
- W3037937296 cites W2095333695 @default.
- W3037937296 cites W2110878250 @default.
- W3037937296 cites W2113758107 @default.
- W3037937296 cites W2120323899 @default.
- W3037937296 cites W2136691316 @default.
- W3037937296 cites W2136734583 @default.
- W3037937296 cites W2137593565 @default.
- W3037937296 cites W2152057480 @default.
- W3037937296 cites W2153796345 @default.
- W3037937296 cites W2163169537 @default.
- W3037937296 cites W2166306439 @default.
- W3037937296 cites W2167347574 @default.
- W3037937296 cites W2283274894 @default.
- W3037937296 cites W2343048433 @default.
- W3037937296 cites W2562779099 @default.
- W3037937296 cites W2594000262 @default.
- W3037937296 cites W2596417002 @default.
- W3037937296 cites W2620594344 @default.
- W3037937296 cites W2772840371 @default.
- W3037937296 cites W2790366771 @default.
- W3037937296 cites W2810054005 @default.
- W3037937296 cites W2893203877 @default.
- W3037937296 cites W2900789844 @default.
- W3037937296 cites W2904234789 @default.
- W3037937296 cites W2943348436 @default.
- W3037937296 cites W2944592180 @default.
- W3037937296 cites W2946053066 @default.
- W3037937296 cites W2967911594 @default.
- W3037937296 cites W2988187759 @default.
- W3037937296 cites W3001150106 @default.
- W3037937296 cites W3009631548 @default.
- W3037937296 cites W3013527469 @default.
- W3037937296 cites W3014409626 @default.
- W3037937296 cites W3025401950 @default.
- W3037937296 cites W3037937296 @default.
- W3037937296 doi "https://doi.org/10.1016/j.scitotenv.2020.140519" @default.
- W3037937296 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7316445" @default.
- W3037937296 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32663686" @default.
- W3037937296 hasPublicationYear "2020" @default.
- W3037937296 type Work @default.
- W3037937296 sameAs 3037937296 @default.
- W3037937296 citedByCount "9" @default.
- W3037937296 countsByYear W30379372962020 @default.
- W3037937296 countsByYear W30379372962021 @default.
- W3037937296 countsByYear W30379372962022 @default.
- W3037937296 countsByYear W30379372962023 @default.
- W3037937296 crossrefType "journal-article" @default.
- W3037937296 hasAuthorship W3037937296A5049087312 @default.
- W3037937296 hasAuthorship W3037937296A5055042167 @default.
- W3037937296 hasBestOaLocation W30379372961 @default.
- W3037937296 hasConcept C10551718 @default.
- W3037937296 hasConcept C105795698 @default.
- W3037937296 hasConcept C124101348 @default.
- W3037937296 hasConcept C127313418 @default.
- W3037937296 hasConcept C134560507 @default.
- W3037937296 hasConcept C144133560 @default.
- W3037937296 hasConcept C149782125 @default.
- W3037937296 hasConcept C154945302 @default.
- W3037937296 hasConcept C162324750 @default.
- W3037937296 hasConcept C165205528 @default.
- W3037937296 hasConcept C17744445 @default.
- W3037937296 hasConcept C199539241 @default.
- W3037937296 hasConcept C2780151969 @default.
- W3037937296 hasConcept C2781147490 @default.
- W3037937296 hasConcept C33923547 @default.
- W3037937296 hasConcept C34736171 @default.
- W3037937296 hasConcept C39432304 @default.
- W3037937296 hasConcept C3962253 @default.