Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037942095> ?p ?o ?g. }
- W3037942095 endingPage "838" @default.
- W3037942095 startingPage "825" @default.
- W3037942095 abstract "Abstract One of the most challenging tasks for tourism scientists is the prediction of potential overtourism situations in the tourist destinations. Until now, some efforts have been proposed for the purpose of establishing early warning systems. However, none of the attempts has tried to make use of a powerful prediction tool that is currently available: machine learning techniques. This article seeks to fill this gap in the existing literature by proposing the use of machine learning techniques in order to predict overtourism issues on a sample of Spanish tourist cities specialized in both, urban and sun and beach tourism products." @default.
- W3037942095 created "2020-07-02" @default.
- W3037942095 creator A5023321113 @default.
- W3037942095 creator A5029547588 @default.
- W3037942095 creator A5037773924 @default.
- W3037942095 creator A5061648587 @default.
- W3037942095 date "2020-06-27" @default.
- W3037942095 modified "2023-10-05" @default.
- W3037942095 title "Machine learning techniques as a tool for predicting <scp>overtourism</scp> : The case of Spain" @default.
- W3037942095 cites W153970401 @default.
- W3037942095 cites W1908656564 @default.
- W3037942095 cites W1966301375 @default.
- W3037942095 cites W2005402011 @default.
- W3037942095 cites W2016667061 @default.
- W3037942095 cites W2028327917 @default.
- W3037942095 cites W2049312487 @default.
- W3037942095 cites W2049735583 @default.
- W3037942095 cites W2083310114 @default.
- W3037942095 cites W2097025685 @default.
- W3037942095 cites W2103970761 @default.
- W3037942095 cites W2135147072 @default.
- W3037942095 cites W2166176603 @default.
- W3037942095 cites W2193984671 @default.
- W3037942095 cites W2284079786 @default.
- W3037942095 cites W2287227468 @default.
- W3037942095 cites W2288881651 @default.
- W3037942095 cites W2305065724 @default.
- W3037942095 cites W2515687006 @default.
- W3037942095 cites W2522643099 @default.
- W3037942095 cites W2569021653 @default.
- W3037942095 cites W2569452744 @default.
- W3037942095 cites W2609660813 @default.
- W3037942095 cites W2726552283 @default.
- W3037942095 cites W2770196349 @default.
- W3037942095 cites W2785536822 @default.
- W3037942095 cites W2796008356 @default.
- W3037942095 cites W2797181065 @default.
- W3037942095 cites W2805466943 @default.
- W3037942095 cites W2887982244 @default.
- W3037942095 cites W2892321301 @default.
- W3037942095 cites W2895752125 @default.
- W3037942095 cites W2898520111 @default.
- W3037942095 cites W2901047852 @default.
- W3037942095 cites W2911239574 @default.
- W3037942095 cites W2912610069 @default.
- W3037942095 cites W2913374137 @default.
- W3037942095 cites W2914288383 @default.
- W3037942095 cites W2917327133 @default.
- W3037942095 cites W2941514228 @default.
- W3037942095 cites W2942274894 @default.
- W3037942095 cites W2942440446 @default.
- W3037942095 cites W2945839506 @default.
- W3037942095 cites W2952226023 @default.
- W3037942095 cites W2952354604 @default.
- W3037942095 cites W2954722431 @default.
- W3037942095 cites W2974250692 @default.
- W3037942095 cites W2979845775 @default.
- W3037942095 cites W2981699251 @default.
- W3037942095 cites W2996380406 @default.
- W3037942095 cites W3000950858 @default.
- W3037942095 cites W3001959391 @default.
- W3037942095 cites W3014708926 @default.
- W3037942095 cites W4205557662 @default.
- W3037942095 cites W4239144981 @default.
- W3037942095 doi "https://doi.org/10.1002/jtr.2383" @default.
- W3037942095 hasPublicationYear "2020" @default.
- W3037942095 type Work @default.
- W3037942095 sameAs 3037942095 @default.
- W3037942095 citedByCount "10" @default.
- W3037942095 countsByYear W30379420952020 @default.
- W3037942095 countsByYear W30379420952021 @default.
- W3037942095 countsByYear W30379420952022 @default.
- W3037942095 crossrefType "journal-article" @default.
- W3037942095 hasAuthorship W3037942095A5023321113 @default.
- W3037942095 hasAuthorship W3037942095A5029547588 @default.
- W3037942095 hasAuthorship W3037942095A5037773924 @default.
- W3037942095 hasAuthorship W3037942095A5061648587 @default.
- W3037942095 hasConcept C10138342 @default.
- W3037942095 hasConcept C144133560 @default.
- W3037942095 hasConcept C162853370 @default.
- W3037942095 hasConcept C166957645 @default.
- W3037942095 hasConcept C182306322 @default.
- W3037942095 hasConcept C185592680 @default.
- W3037942095 hasConcept C18918823 @default.
- W3037942095 hasConcept C198531522 @default.
- W3037942095 hasConcept C205649164 @default.
- W3037942095 hasConcept C2776687071 @default.
- W3037942095 hasConcept C2992285014 @default.
- W3037942095 hasConcept C41008148 @default.
- W3037942095 hasConcept C43617362 @default.
- W3037942095 hasConceptScore W3037942095C10138342 @default.
- W3037942095 hasConceptScore W3037942095C144133560 @default.
- W3037942095 hasConceptScore W3037942095C162853370 @default.
- W3037942095 hasConceptScore W3037942095C166957645 @default.
- W3037942095 hasConceptScore W3037942095C182306322 @default.
- W3037942095 hasConceptScore W3037942095C185592680 @default.
- W3037942095 hasConceptScore W3037942095C18918823 @default.
- W3037942095 hasConceptScore W3037942095C198531522 @default.