Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037971652> ?p ?o ?g. }
- W3037971652 endingPage "105625" @default.
- W3037971652 startingPage "105625" @default.
- W3037971652 abstract "Background: The size of genomics data has been growing rapidly over the last decade. However, the conventional data analysis techniques are incapable of processing this huge amount of data. For the efficient processing of high dimensional datasets, it is essential to develop some new parallel methods. Methods: In this work, a novel distributed method is presented using Map-Reduce (MR)-based approach. The proposed algorithm consists of MR-based Fisher score (mrFScore), MR-based ReliefF (mrRefiefF), and MR-based probabilistic neural network (mrPNN) using a weighted chaotic grey wolf optimization technique (WCGWO). Here, mrFScore, and mrRefiefF methods are introduced for feature selection (FS), and mrPNN is implemented as an effective method for microarray classification. The proper choice of smoothing parameter (σ) plays a major role in the prediction ability of the PNN which is addressed using a novel technique namely, WCGWO. The WCGWO algorithm is used to select the optimal value of σ in PNN. Results: These algorithms have been successfully implemented using the Hadoop framework. The proposed model is tested by using three large and one small microarray datasets, and a comparative analysis is carried out with the existing FS and classification techniques. The results suggest that WCGWO-mrPNN can outperform other methods for high dimensional microarray classification. Conclusion: The effectiveness of the proposed methods are compared with other existing schemes. Experimental results reveal that the proposed scheme is accurate and robust. Hence, the suggested scheme is considered to be a reliable framework for microarray data analysis. Significance: Such a method promotes the application of parallel programming using Hadoop cluster for the analysis of large-scale genomics data, particularly when the dataset is of high dimension." @default.
- W3037971652 created "2020-07-02" @default.
- W3037971652 creator A5000531819 @default.
- W3037971652 creator A5018642773 @default.
- W3037971652 creator A5019927665 @default.
- W3037971652 creator A5027955724 @default.
- W3037971652 creator A5039341855 @default.
- W3037971652 creator A5068696661 @default.
- W3037971652 date "2020-10-01" @default.
- W3037971652 modified "2023-10-02" @default.
- W3037971652 title "Analysis of high-dimensional genomic data using MapReduce based probabilistic neural network" @default.
- W3037971652 cites W1644848062 @default.
- W3037971652 cites W1851861644 @default.
- W3037971652 cites W1965537020 @default.
- W3037971652 cites W1978330414 @default.
- W3037971652 cites W1985900816 @default.
- W3037971652 cites W1994041743 @default.
- W3037971652 cites W2005947278 @default.
- W3037971652 cites W2011333145 @default.
- W3037971652 cites W2023474976 @default.
- W3037971652 cites W2061438946 @default.
- W3037971652 cites W2068768759 @default.
- W3037971652 cites W2078206000 @default.
- W3037971652 cites W2086622126 @default.
- W3037971652 cites W2087684630 @default.
- W3037971652 cites W2109363337 @default.
- W3037971652 cites W2120901529 @default.
- W3037971652 cites W2126600488 @default.
- W3037971652 cites W2128985829 @default.
- W3037971652 cites W2134389439 @default.
- W3037971652 cites W2295280497 @default.
- W3037971652 cites W2297013132 @default.
- W3037971652 cites W2325552192 @default.
- W3037971652 cites W2529692997 @default.
- W3037971652 cites W2559793483 @default.
- W3037971652 cites W2606704276 @default.
- W3037971652 cites W2732796807 @default.
- W3037971652 cites W2748574539 @default.
- W3037971652 cites W2755252449 @default.
- W3037971652 cites W2948202073 @default.
- W3037971652 cites W2964278775 @default.
- W3037971652 cites W2965883839 @default.
- W3037971652 cites W2973691210 @default.
- W3037971652 cites W3009948084 @default.
- W3037971652 cites W4378009855 @default.
- W3037971652 cites W619160221 @default.
- W3037971652 doi "https://doi.org/10.1016/j.cmpb.2020.105625" @default.
- W3037971652 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32650089" @default.
- W3037971652 hasPublicationYear "2020" @default.
- W3037971652 type Work @default.
- W3037971652 sameAs 3037971652 @default.
- W3037971652 citedByCount "29" @default.
- W3037971652 countsByYear W30379716522021 @default.
- W3037971652 countsByYear W30379716522022 @default.
- W3037971652 countsByYear W30379716522023 @default.
- W3037971652 crossrefType "journal-article" @default.
- W3037971652 hasAuthorship W3037971652A5000531819 @default.
- W3037971652 hasAuthorship W3037971652A5018642773 @default.
- W3037971652 hasAuthorship W3037971652A5019927665 @default.
- W3037971652 hasAuthorship W3037971652A5027955724 @default.
- W3037971652 hasAuthorship W3037971652A5039341855 @default.
- W3037971652 hasAuthorship W3037971652A5068696661 @default.
- W3037971652 hasConcept C124101348 @default.
- W3037971652 hasConcept C134342201 @default.
- W3037971652 hasConcept C148483581 @default.
- W3037971652 hasConcept C153180895 @default.
- W3037971652 hasConcept C154945302 @default.
- W3037971652 hasConcept C175202392 @default.
- W3037971652 hasConcept C31972630 @default.
- W3037971652 hasConcept C3770464 @default.
- W3037971652 hasConcept C41008148 @default.
- W3037971652 hasConcept C49937458 @default.
- W3037971652 hasConcept C50644808 @default.
- W3037971652 hasConceptScore W3037971652C124101348 @default.
- W3037971652 hasConceptScore W3037971652C134342201 @default.
- W3037971652 hasConceptScore W3037971652C148483581 @default.
- W3037971652 hasConceptScore W3037971652C153180895 @default.
- W3037971652 hasConceptScore W3037971652C154945302 @default.
- W3037971652 hasConceptScore W3037971652C175202392 @default.
- W3037971652 hasConceptScore W3037971652C31972630 @default.
- W3037971652 hasConceptScore W3037971652C3770464 @default.
- W3037971652 hasConceptScore W3037971652C41008148 @default.
- W3037971652 hasConceptScore W3037971652C49937458 @default.
- W3037971652 hasConceptScore W3037971652C50644808 @default.
- W3037971652 hasLocation W30379716521 @default.
- W3037971652 hasOpenAccess W3037971652 @default.
- W3037971652 hasPrimaryLocation W30379716521 @default.
- W3037971652 hasRelatedWork W154148467 @default.
- W3037971652 hasRelatedWork W1966547660 @default.
- W3037971652 hasRelatedWork W2048220287 @default.
- W3037971652 hasRelatedWork W2067837718 @default.
- W3037971652 hasRelatedWork W2355754418 @default.
- W3037971652 hasRelatedWork W2355766745 @default.
- W3037971652 hasRelatedWork W2374528926 @default.
- W3037971652 hasRelatedWork W2381770184 @default.
- W3037971652 hasRelatedWork W2393925811 @default.
- W3037971652 hasRelatedWork W2345184372 @default.
- W3037971652 hasVolume "195" @default.