Matches in SemOpenAlex for { <https://semopenalex.org/work/W3037994071> ?p ?o ?g. }
- W3037994071 abstract "Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and approximate maximization in poly. time. Continuous submodularity is obtained by generalizing the notion of submodularity from discrete domains to continuous domains. It intuitively captures a repulsive effect amongst different dimensions of the defined multivariate function. In this paper, we systematically study continuous submodularity and a class of non-convex optimization problems: continuous submodular function maximization. We start by a thorough characterization of the class of continuous submodular functions, and show that continuous submodularity is equivalent to a weak version of the diminishing returns (DR) property. Thus we also derive a subclass of continuous submodular functions, termed continuous DR-submodular functions, which enjoys the full DR property. Then we present operations that preserve continuous (DR-)submodularity, thus yielding general rules for composing new submodular functions. We establish intriguing properties for the problem of constrained DR-submodular maximization, such as the local-global relation. We identify several applications of continuous submodular optimization, ranging from influence maximization, MAP inference for DPPs to provable mean field inference. For these applications, continuous submodularity formalizes valuable domain knowledge relevant for optimizing this class of objectives. We present inapproximability results and provable algorithms for two problem settings: constrained monotone DR-submodular maximization and constrained non-monotone DR-submodular maximization. Finally, we extensively evaluate the effectiveness of the proposed algorithms." @default.
- W3037994071 created "2020-07-02" @default.
- W3037994071 creator A5003040843 @default.
- W3037994071 creator A5038199211 @default.
- W3037994071 creator A5045777220 @default.
- W3037994071 date "2020-06-24" @default.
- W3037994071 modified "2023-09-25" @default.
- W3037994071 title "Continuous Submodular Function Maximization" @default.
- W3037994071 cites W131619556 @default.
- W3037994071 cites W1486950299 @default.
- W3037994071 cites W1498671329 @default.
- W3037994071 cites W1542719709 @default.
- W3037994071 cites W1556236121 @default.
- W3037994071 cites W1582743214 @default.
- W3037994071 cites W1606052501 @default.
- W3037994071 cites W1680189815 @default.
- W3037994071 cites W1730255663 @default.
- W3037994071 cites W1856201628 @default.
- W3037994071 cites W1875482710 @default.
- W3037994071 cites W1876636401 @default.
- W3037994071 cites W1901429906 @default.
- W3037994071 cites W1908692903 @default.
- W3037994071 cites W1910435774 @default.
- W3037994071 cites W1962684803 @default.
- W3037994071 cites W1968135284 @default.
- W3037994071 cites W1981042292 @default.
- W3037994071 cites W1989453388 @default.
- W3037994071 cites W2009941369 @default.
- W3037994071 cites W2026338082 @default.
- W3037994071 cites W2027470314 @default.
- W3037994071 cites W2027680861 @default.
- W3037994071 cites W2029463628 @default.
- W3037994071 cites W2033885045 @default.
- W3037994071 cites W2035442052 @default.
- W3037994071 cites W2035575256 @default.
- W3037994071 cites W2038938388 @default.
- W3037994071 cites W2042799324 @default.
- W3037994071 cites W2045492898 @default.
- W3037994071 cites W2053381548 @default.
- W3037994071 cites W2053853578 @default.
- W3037994071 cites W2061820396 @default.
- W3037994071 cites W2068674173 @default.
- W3037994071 cites W2072291569 @default.
- W3037994071 cites W2074763854 @default.
- W3037994071 cites W2079354271 @default.
- W3037994071 cites W2094067695 @default.
- W3037994071 cites W2102588682 @default.
- W3037994071 cites W2103012681 @default.
- W3037994071 cites W2105724942 @default.
- W3037994071 cites W2110373679 @default.
- W3037994071 cites W2121293983 @default.
- W3037994071 cites W2128059732 @default.
- W3037994071 cites W2129919379 @default.
- W3037994071 cites W2132651631 @default.
- W3037994071 cites W2136885855 @default.
- W3037994071 cites W2141403143 @default.
- W3037994071 cites W2141552007 @default.
- W3037994071 cites W2143554828 @default.
- W3037994071 cites W2143996311 @default.
- W3037994071 cites W2144933361 @default.
- W3037994071 cites W2147716762 @default.
- W3037994071 cites W2158334272 @default.
- W3037994071 cites W2158504911 @default.
- W3037994071 cites W2158557760 @default.
- W3037994071 cites W2161120928 @default.
- W3037994071 cites W2161413792 @default.
- W3037994071 cites W2162361955 @default.
- W3037994071 cites W2170610459 @default.
- W3037994071 cites W2170735271 @default.
- W3037994071 cites W2181828419 @default.
- W3037994071 cites W2184634347 @default.
- W3037994071 cites W2186287317 @default.
- W3037994071 cites W2347557623 @default.
- W3037994071 cites W2401608360 @default.
- W3037994071 cites W2407904812 @default.
- W3037994071 cites W2460087882 @default.
- W3037994071 cites W2468075526 @default.
- W3037994071 cites W2473150540 @default.
- W3037994071 cites W2500139799 @default.
- W3037994071 cites W2528306447 @default.
- W3037994071 cites W2550288468 @default.
- W3037994071 cites W2552048225 @default.
- W3037994071 cites W2585014550 @default.
- W3037994071 cites W2621717961 @default.
- W3037994071 cites W2786588856 @default.
- W3037994071 cites W2803199317 @default.
- W3037994071 cites W2808084307 @default.
- W3037994071 cites W2889329271 @default.
- W3037994071 cites W2944836791 @default.
- W3037994071 cites W2949979820 @default.
- W3037994071 cites W2951482518 @default.
- W3037994071 cites W2954228454 @default.
- W3037994071 cites W2962795549 @default.
- W3037994071 cites W2962851402 @default.
- W3037994071 cites W2962866337 @default.
- W3037994071 cites W2962867868 @default.
- W3037994071 cites W2963116072 @default.
- W3037994071 cites W2963201732 @default.
- W3037994071 cites W2963433607 @default.
- W3037994071 cites W2964069971 @default.