Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038077692> ?p ?o ?g. }
- W3038077692 endingPage "2180" @default.
- W3038077692 startingPage "2169" @default.
- W3038077692 abstract "Intelligent Internet of Things (IIoT) is comprised of various wireless and wired networks for industrial applications, which makes it complex and heterogeneous.The openness of IIoT has led to the intractable problems of network security and management. Many network security and management functions rely on network traffic prediction techniques, such as anomaly detection and predictive network planning. Predicting IIoT network traffic is significantly difficult because its frequently updated topology and diversified services lead to irregular network traffic fluctuations. Motivated by these observations, we proposed a reinforcement learning-based mechanism in this article. We modeled the network traffic prediction problem as a Markov decision process, and then, predicted network traffic by Monte Carlo $Q$ -learning. Furthermore, we addressed the real-time requirement of the proposed mechanism and we proposed a residual-based dictionary learning algorithm to improve the complexity of Monte Carlo $Q$ -learning. Finally, the effectiveness of our mechanism was evaluated using the real network traffic." @default.
- W3038077692 created "2020-07-02" @default.
- W3038077692 creator A5031220156 @default.
- W3038077692 creator A5034529593 @default.
- W3038077692 creator A5034929846 @default.
- W3038077692 creator A5048122479 @default.
- W3038077692 creator A5051195514 @default.
- W3038077692 creator A5059353810 @default.
- W3038077692 creator A5088601580 @default.
- W3038077692 creator A5089177690 @default.
- W3038077692 date "2021-03-01" @default.
- W3038077692 modified "2023-10-17" @default.
- W3038077692 title "A Reinforcement Learning-Based Network Traffic Prediction Mechanism in Intelligent Internet of Things" @default.
- W3038077692 cites W1976790773 @default.
- W3038077692 cites W1997840820 @default.
- W3038077692 cites W2117368434 @default.
- W3038077692 cites W2126316555 @default.
- W3038077692 cites W2127966682 @default.
- W3038077692 cites W2165131254 @default.
- W3038077692 cites W2500258836 @default.
- W3038077692 cites W2514159439 @default.
- W3038077692 cites W2528323426 @default.
- W3038077692 cites W2596628535 @default.
- W3038077692 cites W2742537553 @default.
- W3038077692 cites W2766767083 @default.
- W3038077692 cites W2778138942 @default.
- W3038077692 cites W2789386460 @default.
- W3038077692 cites W2789986657 @default.
- W3038077692 cites W2794108656 @default.
- W3038077692 cites W2802223983 @default.
- W3038077692 cites W2807536558 @default.
- W3038077692 cites W2821957101 @default.
- W3038077692 cites W2890072063 @default.
- W3038077692 cites W2907063143 @default.
- W3038077692 cites W2910603649 @default.
- W3038077692 cites W2916491361 @default.
- W3038077692 cites W2919333918 @default.
- W3038077692 cites W2921319277 @default.
- W3038077692 cites W2962952126 @default.
- W3038077692 cites W2963185263 @default.
- W3038077692 cites W2963643265 @default.
- W3038077692 cites W2968518053 @default.
- W3038077692 cites W2968522222 @default.
- W3038077692 cites W2969324740 @default.
- W3038077692 cites W2980789769 @default.
- W3038077692 cites W3101454826 @default.
- W3038077692 cites W4240493355 @default.
- W3038077692 doi "https://doi.org/10.1109/tii.2020.3004232" @default.
- W3038077692 hasPublicationYear "2021" @default.
- W3038077692 type Work @default.
- W3038077692 sameAs 3038077692 @default.
- W3038077692 citedByCount "34" @default.
- W3038077692 countsByYear W30380776922021 @default.
- W3038077692 countsByYear W30380776922022 @default.
- W3038077692 countsByYear W30380776922023 @default.
- W3038077692 crossrefType "journal-article" @default.
- W3038077692 hasAuthorship W3038077692A5031220156 @default.
- W3038077692 hasAuthorship W3038077692A5034529593 @default.
- W3038077692 hasAuthorship W3038077692A5034929846 @default.
- W3038077692 hasAuthorship W3038077692A5048122479 @default.
- W3038077692 hasAuthorship W3038077692A5051195514 @default.
- W3038077692 hasAuthorship W3038077692A5059353810 @default.
- W3038077692 hasAuthorship W3038077692A5088601580 @default.
- W3038077692 hasAuthorship W3038077692A5089177690 @default.
- W3038077692 hasConcept C110875604 @default.
- W3038077692 hasConcept C111472728 @default.
- W3038077692 hasConcept C119857082 @default.
- W3038077692 hasConcept C136764020 @default.
- W3038077692 hasConcept C138885662 @default.
- W3038077692 hasConcept C154945302 @default.
- W3038077692 hasConcept C31258907 @default.
- W3038077692 hasConcept C38652104 @default.
- W3038077692 hasConcept C41008148 @default.
- W3038077692 hasConcept C81860439 @default.
- W3038077692 hasConcept C89611455 @default.
- W3038077692 hasConcept C97541855 @default.
- W3038077692 hasConceptScore W3038077692C110875604 @default.
- W3038077692 hasConceptScore W3038077692C111472728 @default.
- W3038077692 hasConceptScore W3038077692C119857082 @default.
- W3038077692 hasConceptScore W3038077692C136764020 @default.
- W3038077692 hasConceptScore W3038077692C138885662 @default.
- W3038077692 hasConceptScore W3038077692C154945302 @default.
- W3038077692 hasConceptScore W3038077692C31258907 @default.
- W3038077692 hasConceptScore W3038077692C38652104 @default.
- W3038077692 hasConceptScore W3038077692C41008148 @default.
- W3038077692 hasConceptScore W3038077692C81860439 @default.
- W3038077692 hasConceptScore W3038077692C89611455 @default.
- W3038077692 hasConceptScore W3038077692C97541855 @default.
- W3038077692 hasFunder F4320321001 @default.
- W3038077692 hasFunder F4320322927 @default.
- W3038077692 hasFunder F4320336270 @default.
- W3038077692 hasIssue "3" @default.
- W3038077692 hasLocation W30380776921 @default.
- W3038077692 hasOpenAccess W3038077692 @default.
- W3038077692 hasPrimaryLocation W30380776921 @default.
- W3038077692 hasRelatedWork W1562959674 @default.
- W3038077692 hasRelatedWork W2923653485 @default.
- W3038077692 hasRelatedWork W2952472710 @default.