Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038163067> ?p ?o ?g. }
- W3038163067 endingPage "2109" @default.
- W3038163067 startingPage "2109" @default.
- W3038163067 abstract "Airborne laser scanning (ALS) systems tuned to the near-infrared (NIR; 1064 nm) wavelength have become the best available data source for characterizing vegetation structure. Proliferation of multi-spectral ALS (M-ALS) data with lasers tuned at two additional wavelengths (commonly 532 nm; green, and 1550 nm; short-wave infrared (SWIR)) has promoted interest in the benefit of additional wavelengths for forest inventory modelling. In this study, structural and intensity based M-ALS metrics were derived from wavelengths independently and combined to assess their value for modelling forest inventory attributes (Lorey’s height (HL), gross volume (V), and basal area (BA)) and overstorey species diversity (Shannon index (H), Simpson index (D), and species richness (R)) in a diverse mixed-wood forest in Ontario, Canada. The area-based approach (ABA) to forest attribute modelling was used, where structural- and intensity-based metrics were calculated and used as inputs for random forest models. Structural metrics from the SWIR channel (SWIRstruc) were found to be the most accurate for H and R (%RMSE = 14.3 and 14.9), and NIRstruc were most accurate for V (%RMSE = 20.4). The addition of intensity metrics marginally increased the accuracy of HL models for SWIR and combined channels (%RMSE = 7.5). Additionally, a multi-resolution (0.5, 1, 2 m) voxel analysis was performed, where intensity data were used to calculate a suite of spectral indices. Plot-level summaries of spectral indices from each voxel resolution alone, as well as combined with structural metrics from the NIR wavelength, were used as random forest predictors. The addition of structural metrics from the NIR band reduced %RMSE for all models with HL, BA, and V realizing the largest improvements. Intensity metrics were found to be important variables in the 1 m and 2 m voxel models for D and H. Overall, results indicated that structural metrics were the most appropriate. However, the inclusion of intensity metrics, and continued testing of their potential for modelling diversity indices is warranted, given minor improvements when included. Continued analyses using M-ALS intensity metrics and voxel-based indices would help to better understand the value of these data, and their future role in forest management." @default.
- W3038163067 created "2020-07-10" @default.
- W3038163067 creator A5006928044 @default.
- W3038163067 creator A5043761294 @default.
- W3038163067 creator A5049217919 @default.
- W3038163067 creator A5050508845 @default.
- W3038163067 creator A5050842469 @default.
- W3038163067 creator A5082116235 @default.
- W3038163067 date "2020-07-01" @default.
- W3038163067 modified "2023-10-11" @default.
- W3038163067 title "Forest Inventory and Diversity Attribute Modelling Using Structural and Intensity Metrics from Multi-Spectral Airborne Laser Scanning Data" @default.
- W3038163067 cites W1875061881 @default.
- W3038163067 cites W1969866530 @default.
- W3038163067 cites W1995029758 @default.
- W3038163067 cites W1996263757 @default.
- W3038163067 cites W2016053568 @default.
- W3038163067 cites W2028413465 @default.
- W3038163067 cites W2030080266 @default.
- W3038163067 cites W2072721499 @default.
- W3038163067 cites W2082984896 @default.
- W3038163067 cites W2113551198 @default.
- W3038163067 cites W2118731492 @default.
- W3038163067 cites W2124911115 @default.
- W3038163067 cites W2125590628 @default.
- W3038163067 cites W2131121992 @default.
- W3038163067 cites W2133145071 @default.
- W3038163067 cites W2140940625 @default.
- W3038163067 cites W2143481518 @default.
- W3038163067 cites W2159352923 @default.
- W3038163067 cites W2470403126 @default.
- W3038163067 cites W2482464033 @default.
- W3038163067 cites W2581388530 @default.
- W3038163067 cites W2597479177 @default.
- W3038163067 cites W2608675201 @default.
- W3038163067 cites W2763287719 @default.
- W3038163067 cites W2790354098 @default.
- W3038163067 cites W2795268736 @default.
- W3038163067 cites W2797962635 @default.
- W3038163067 cites W2804464589 @default.
- W3038163067 cites W2809798844 @default.
- W3038163067 cites W2886463967 @default.
- W3038163067 cites W2887052668 @default.
- W3038163067 cites W2887291686 @default.
- W3038163067 cites W2904790740 @default.
- W3038163067 cites W2908054720 @default.
- W3038163067 cites W2919211848 @default.
- W3038163067 cites W2924496886 @default.
- W3038163067 cites W2950005168 @default.
- W3038163067 cites W2954278804 @default.
- W3038163067 cites W2954778974 @default.
- W3038163067 cites W2972789182 @default.
- W3038163067 cites W2988418176 @default.
- W3038163067 cites W2991648675 @default.
- W3038163067 cites W2999393155 @default.
- W3038163067 cites W2999660945 @default.
- W3038163067 doi "https://doi.org/10.3390/rs12132109" @default.
- W3038163067 hasPublicationYear "2020" @default.
- W3038163067 type Work @default.
- W3038163067 sameAs 3038163067 @default.
- W3038163067 citedByCount "13" @default.
- W3038163067 countsByYear W30381630672020 @default.
- W3038163067 countsByYear W30381630672021 @default.
- W3038163067 countsByYear W30381630672022 @default.
- W3038163067 countsByYear W30381630672023 @default.
- W3038163067 crossrefType "journal-article" @default.
- W3038163067 hasAuthorship W3038163067A5006928044 @default.
- W3038163067 hasAuthorship W3038163067A5043761294 @default.
- W3038163067 hasAuthorship W3038163067A5049217919 @default.
- W3038163067 hasAuthorship W3038163067A5050508845 @default.
- W3038163067 hasAuthorship W3038163067A5050842469 @default.
- W3038163067 hasAuthorship W3038163067A5082116235 @default.
- W3038163067 hasBestOaLocation W30381630671 @default.
- W3038163067 hasConcept C105795698 @default.
- W3038163067 hasConcept C120665830 @default.
- W3038163067 hasConcept C121332964 @default.
- W3038163067 hasConcept C139945424 @default.
- W3038163067 hasConcept C147103442 @default.
- W3038163067 hasConcept C154945302 @default.
- W3038163067 hasConcept C169258074 @default.
- W3038163067 hasConcept C18903297 @default.
- W3038163067 hasConcept C205649164 @default.
- W3038163067 hasConcept C25989453 @default.
- W3038163067 hasConcept C28631016 @default.
- W3038163067 hasConcept C33923547 @default.
- W3038163067 hasConcept C39432304 @default.
- W3038163067 hasConcept C41008148 @default.
- W3038163067 hasConcept C54286561 @default.
- W3038163067 hasConcept C6260449 @default.
- W3038163067 hasConcept C62649853 @default.
- W3038163067 hasConcept C86803240 @default.
- W3038163067 hasConcept C91354502 @default.
- W3038163067 hasConcept C97137747 @default.
- W3038163067 hasConceptScore W3038163067C105795698 @default.
- W3038163067 hasConceptScore W3038163067C120665830 @default.
- W3038163067 hasConceptScore W3038163067C121332964 @default.
- W3038163067 hasConceptScore W3038163067C139945424 @default.
- W3038163067 hasConceptScore W3038163067C147103442 @default.
- W3038163067 hasConceptScore W3038163067C154945302 @default.