Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038227888> ?p ?o ?g. }
- W3038227888 abstract "Abstract The increase in the volume of structured and unstructured data related to more than just sport events leads to the development and increased use of techniques that extract information and employ machine‐learning algorithms in predicting process outcomes based on input but not necessarily output data. Taking sports into consideration, predicting outcomes, and extracting valuable information has become appealing not only to sports workers but also to the wider audience, particularly in the areas of team management and sports betting. The aim of this article is to review the existing machine learning (ML) algorithms in predicting sport outcomes. Over 100 papers were analyzed and only some of these papers were taken into consideration. Almost all of the analyzed papers use some sort of feature selection and feature extraction, most often prior to using the machine‐learning algorithm. As an evaluation method of ML algorithms, researchers, in most cases, use data segmentation with data being chronologically distributed. In addition to data segmentation, researchers also use the k ‐cross‐evaluation method. Sport predictions are usually treated as a classification problem with one class being predicted and rare cases being predicted as numerical values. Mostly used ML models are neural networks using data segmentation. This article is categorized under: Technologies > Machine Learning Technologies > Prediction" @default.
- W3038227888 created "2020-07-10" @default.
- W3038227888 creator A5012725804 @default.
- W3038227888 creator A5014896473 @default.
- W3038227888 date "2020-06-30" @default.
- W3038227888 modified "2023-10-06" @default.
- W3038227888 title "The use of machine learning in sport outcome prediction: A review" @default.
- W3038227888 cites W1487321909 @default.
- W3038227888 cites W156580538 @default.
- W3038227888 cites W1970122754 @default.
- W3038227888 cites W1986134386 @default.
- W3038227888 cites W1996773027 @default.
- W3038227888 cites W2028493660 @default.
- W3038227888 cites W2041574817 @default.
- W3038227888 cites W2044732976 @default.
- W3038227888 cites W2057997183 @default.
- W3038227888 cites W2071602610 @default.
- W3038227888 cites W2133218851 @default.
- W3038227888 cites W2141752002 @default.
- W3038227888 cites W2147094635 @default.
- W3038227888 cites W2151554678 @default.
- W3038227888 cites W2170652546 @default.
- W3038227888 cites W2182294807 @default.
- W3038227888 cites W2250086655 @default.
- W3038227888 cites W2267945762 @default.
- W3038227888 cites W2295380493 @default.
- W3038227888 cites W2337127709 @default.
- W3038227888 cites W2338178179 @default.
- W3038227888 cites W2533151390 @default.
- W3038227888 cites W2562798739 @default.
- W3038227888 cites W2567628451 @default.
- W3038227888 cites W2607371179 @default.
- W3038227888 cites W2743607944 @default.
- W3038227888 cites W2754846726 @default.
- W3038227888 cites W2790823697 @default.
- W3038227888 cites W2888506415 @default.
- W3038227888 cites W2893041312 @default.
- W3038227888 cites W2916828210 @default.
- W3038227888 cites W2958294831 @default.
- W3038227888 cites W2995493963 @default.
- W3038227888 cites W2996997955 @default.
- W3038227888 cites W3198350258 @default.
- W3038227888 cites W4205699531 @default.
- W3038227888 cites W82723948 @default.
- W3038227888 doi "https://doi.org/10.1002/widm.1380" @default.
- W3038227888 hasPublicationYear "2020" @default.
- W3038227888 type Work @default.
- W3038227888 sameAs 3038227888 @default.
- W3038227888 citedByCount "29" @default.
- W3038227888 countsByYear W30382278882020 @default.
- W3038227888 countsByYear W30382278882021 @default.
- W3038227888 countsByYear W30382278882022 @default.
- W3038227888 countsByYear W30382278882023 @default.
- W3038227888 crossrefType "journal-article" @default.
- W3038227888 hasAuthorship W3038227888A5012725804 @default.
- W3038227888 hasAuthorship W3038227888A5014896473 @default.
- W3038227888 hasConcept C111919701 @default.
- W3038227888 hasConcept C119857082 @default.
- W3038227888 hasConcept C138885662 @default.
- W3038227888 hasConcept C144237770 @default.
- W3038227888 hasConcept C148220186 @default.
- W3038227888 hasConcept C148483581 @default.
- W3038227888 hasConcept C154945302 @default.
- W3038227888 hasConcept C23123220 @default.
- W3038227888 hasConcept C2776401178 @default.
- W3038227888 hasConcept C33923547 @default.
- W3038227888 hasConcept C41008148 @default.
- W3038227888 hasConcept C41895202 @default.
- W3038227888 hasConcept C50644808 @default.
- W3038227888 hasConcept C88548561 @default.
- W3038227888 hasConcept C89600930 @default.
- W3038227888 hasConcept C98045186 @default.
- W3038227888 hasConceptScore W3038227888C111919701 @default.
- W3038227888 hasConceptScore W3038227888C119857082 @default.
- W3038227888 hasConceptScore W3038227888C138885662 @default.
- W3038227888 hasConceptScore W3038227888C144237770 @default.
- W3038227888 hasConceptScore W3038227888C148220186 @default.
- W3038227888 hasConceptScore W3038227888C148483581 @default.
- W3038227888 hasConceptScore W3038227888C154945302 @default.
- W3038227888 hasConceptScore W3038227888C23123220 @default.
- W3038227888 hasConceptScore W3038227888C2776401178 @default.
- W3038227888 hasConceptScore W3038227888C33923547 @default.
- W3038227888 hasConceptScore W3038227888C41008148 @default.
- W3038227888 hasConceptScore W3038227888C41895202 @default.
- W3038227888 hasConceptScore W3038227888C50644808 @default.
- W3038227888 hasConceptScore W3038227888C88548561 @default.
- W3038227888 hasConceptScore W3038227888C89600930 @default.
- W3038227888 hasConceptScore W3038227888C98045186 @default.
- W3038227888 hasIssue "5" @default.
- W3038227888 hasLocation W30382278881 @default.
- W3038227888 hasOpenAccess W3038227888 @default.
- W3038227888 hasPrimaryLocation W30382278881 @default.
- W3038227888 hasRelatedWork W2382290278 @default.
- W3038227888 hasRelatedWork W2532775738 @default.
- W3038227888 hasRelatedWork W2961085424 @default.
- W3038227888 hasRelatedWork W3087493185 @default.
- W3038227888 hasRelatedWork W3163334550 @default.
- W3038227888 hasRelatedWork W3200179079 @default.
- W3038227888 hasRelatedWork W4286629047 @default.
- W3038227888 hasRelatedWork W4293525103 @default.