Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038704997> ?p ?o ?g. }
- W3038704997 endingPage "105637" @default.
- W3038704997 startingPage "105637" @default.
- W3038704997 abstract "Prostate cancer is one of the most common diseases affecting men worldwide. The Gleason scoring system is the primary diagnostic and prognostic tool for prostate cancer. Furthermore, recent reports indicate that the presence of patterns of the Gleason scale such as the cribriform pattern may also correlate with a worse prognosis compared to other patterns belonging to the Gleason grade 4. Current clinical guidelines have indicated the convenience of highlight its presence during the analysis of biopsies. All these requirements suppose a great workload for the pathologist during the analysis of each sample, which is based on the pathologist’s visual analysis of the morphology and organisation of the glands in the tissue, a time-consuming and subjective task. In recent years, with the development of digitisation devices, the use of computer vision techniques for the analysis of biopsies has increased. However, to the best of the authors’ knowledge, the development of algorithms to automatically detect individual cribriform patterns belonging to Gleason grade 4 has not yet been studied in the literature. The objective of the work presented in this paper is to develop a deep-learning-based system able to support pathologists in the daily analysis of prostate biopsies. This analysis must include the Gleason grading of local structures, the detection of cribriform patterns, and the Gleason scoring of the whole biopsy. The methodological core of this work is a patch-wise predictive model based on convolutional neural networks able to determine the presence of cancerous patterns based on the Gleason grading system. In particular, we train from scratch a simple self-design architecture with three filters and a top model with global-max pooling. The cribriform pattern is detected by retraining the set of filters of the last convolutional layer in the network. Subsequently, a biopsy-level prediction map is reconstructed by bi-linear interpolation of the patch-level prediction of the Gleason grades. In addition, from the reconstructed prediction map, we compute the percentage of each Gleason grade in the tissue to feed a multi-layer perceptron which provides a biopsy-level score. In our SICAPv2 database, composed of 182 annotated whole slide images, we obtained a Cohen’s quadratic kappa of 0.77 in the test set for the patch-level Gleason grading with the proposed architecture trained from scratch. Our results outperform previous ones reported in the literature. Furthermore, this model reaches the level of fine-tuned state-of-the-art architectures in a patient-based four groups cross validation. In the cribriform pattern detection task, we obtained an area under ROC curve of 0.82. Regarding the biopsy Gleason scoring, we achieved a quadratic Cohen’s Kappa of 0.81 in the test subset. Shallow CNN architectures trained from scratch outperform current state-of-the-art methods for Gleason grades classification. Our proposed model is capable of characterising the different Gleason grades in prostate tissue by extracting low-level features through three basic blocks (i.e. convolutional layer + max pooling). The use of global-max pooling to reduce each activation map has shown to be a key factor for reducing complexity in the model and avoiding overfitting. Regarding the Gleason scoring of biopsies, a multi-layer perceptron has shown to better model the decision-making of pathologists than previous simpler models used in the literature." @default.
- W3038704997 created "2020-07-10" @default.
- W3038704997 creator A5019517367 @default.
- W3038704997 creator A5023830568 @default.
- W3038704997 creator A5024176997 @default.
- W3038704997 creator A5043316752 @default.
- W3038704997 creator A5059918946 @default.
- W3038704997 date "2020-10-01" @default.
- W3038704997 modified "2023-10-18" @default.
- W3038704997 title "Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection" @default.
- W3038704997 cites W172445213 @default.
- W3038704997 cites W1820655337 @default.
- W3038704997 cites W1990748933 @default.
- W3038704997 cites W2037789405 @default.
- W3038704997 cites W2149583503 @default.
- W3038704997 cites W2294284738 @default.
- W3038704997 cites W2332713888 @default.
- W3038704997 cites W2340422569 @default.
- W3038704997 cites W2592611445 @default.
- W3038704997 cites W2784618326 @default.
- W3038704997 cites W2792294713 @default.
- W3038704997 cites W2793475809 @default.
- W3038704997 cites W2796192189 @default.
- W3038704997 cites W2892938835 @default.
- W3038704997 cites W2898020899 @default.
- W3038704997 cites W2921197949 @default.
- W3038704997 cites W2928032767 @default.
- W3038704997 cites W2945092046 @default.
- W3038704997 cites W2949226441 @default.
- W3038704997 cites W2954064535 @default.
- W3038704997 doi "https://doi.org/10.1016/j.cmpb.2020.105637" @default.
- W3038704997 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32653747" @default.
- W3038704997 hasPublicationYear "2020" @default.
- W3038704997 type Work @default.
- W3038704997 sameAs 3038704997 @default.
- W3038704997 citedByCount "39" @default.
- W3038704997 countsByYear W30387049972021 @default.
- W3038704997 countsByYear W30387049972022 @default.
- W3038704997 countsByYear W30387049972023 @default.
- W3038704997 crossrefType "journal-article" @default.
- W3038704997 hasAuthorship W3038704997A5019517367 @default.
- W3038704997 hasAuthorship W3038704997A5023830568 @default.
- W3038704997 hasAuthorship W3038704997A5024176997 @default.
- W3038704997 hasAuthorship W3038704997A5043316752 @default.
- W3038704997 hasAuthorship W3038704997A5059918946 @default.
- W3038704997 hasBestOaLocation W30387049972 @default.
- W3038704997 hasConcept C111919701 @default.
- W3038704997 hasConcept C121608353 @default.
- W3038704997 hasConcept C126322002 @default.
- W3038704997 hasConcept C127413603 @default.
- W3038704997 hasConcept C142724271 @default.
- W3038704997 hasConcept C147176958 @default.
- W3038704997 hasConcept C2775934546 @default.
- W3038704997 hasConcept C2776235491 @default.
- W3038704997 hasConcept C2777286243 @default.
- W3038704997 hasConcept C2777546739 @default.
- W3038704997 hasConcept C2778476105 @default.
- W3038704997 hasConcept C2779466945 @default.
- W3038704997 hasConcept C2780192828 @default.
- W3038704997 hasConcept C2909818935 @default.
- W3038704997 hasConcept C41008148 @default.
- W3038704997 hasConcept C71924100 @default.
- W3038704997 hasConceptScore W3038704997C111919701 @default.
- W3038704997 hasConceptScore W3038704997C121608353 @default.
- W3038704997 hasConceptScore W3038704997C126322002 @default.
- W3038704997 hasConceptScore W3038704997C127413603 @default.
- W3038704997 hasConceptScore W3038704997C142724271 @default.
- W3038704997 hasConceptScore W3038704997C147176958 @default.
- W3038704997 hasConceptScore W3038704997C2775934546 @default.
- W3038704997 hasConceptScore W3038704997C2776235491 @default.
- W3038704997 hasConceptScore W3038704997C2777286243 @default.
- W3038704997 hasConceptScore W3038704997C2777546739 @default.
- W3038704997 hasConceptScore W3038704997C2778476105 @default.
- W3038704997 hasConceptScore W3038704997C2779466945 @default.
- W3038704997 hasConceptScore W3038704997C2780192828 @default.
- W3038704997 hasConceptScore W3038704997C2909818935 @default.
- W3038704997 hasConceptScore W3038704997C41008148 @default.
- W3038704997 hasConceptScore W3038704997C71924100 @default.
- W3038704997 hasFunder F4320321837 @default.
- W3038704997 hasLocation W30387049971 @default.
- W3038704997 hasLocation W30387049972 @default.
- W3038704997 hasLocation W30387049973 @default.
- W3038704997 hasOpenAccess W3038704997 @default.
- W3038704997 hasPrimaryLocation W30387049971 @default.
- W3038704997 hasRelatedWork W108895284 @default.
- W3038704997 hasRelatedWork W1530684645 @default.
- W3038704997 hasRelatedWork W1676867383 @default.
- W3038704997 hasRelatedWork W1982503259 @default.
- W3038704997 hasRelatedWork W2037411085 @default.
- W3038704997 hasRelatedWork W2094977608 @default.
- W3038704997 hasRelatedWork W2151006016 @default.
- W3038704997 hasRelatedWork W2566665866 @default.
- W3038704997 hasRelatedWork W2732124794 @default.
- W3038704997 hasRelatedWork W45810644 @default.
- W3038704997 hasVolume "195" @default.
- W3038704997 isParatext "false" @default.
- W3038704997 isRetracted "false" @default.
- W3038704997 magId "3038704997" @default.